# Measuring the Effect of Residual P

# Cathy Paterson, Roy Latta, Wade Shepperd and Ian Richter

SARDI, Minnipa Agricultural Centre





#### Location:

Minnipa Ag Centre

## Rainfall

Av. Annual: 325 mm Av. GSR: 242 mm 2009 Total: 417 mm 2009 GSR: 330 mm 2010 Total: 410 mm 2010 GSR: 346 mm

## Yield

Potential: 4.7 t/ha (W) Actual: 2.8 t/ha Paddock History 2009: Wheat 2008: Wheat 2007: Wheat Soil Type Red sandy loam Plot size

1.4 m x 12 m

# Key messages

 A site with high phosphorus (P) reserves needed no applied P fertiliser in 2010 to produce a 2.5 t/ha wheat yield.

# Why do the trial?

While we know soil reserves of phosphorus (P) are an important source of P for crops, we do not have a good understanding of how long soil P reserves last or how applied fertilisers contribute to soil reserves.

In order to assess the P response from current and residual fertiliser applications, a 4 year replicated trial was established at MAC with the changes in soil P measured annually as Colwell P, and the comparative crop performances monitored.

#### How was it done?

A 4 year replicated trial was established in Paddock South 1, Minnipa Agricultural Centre in 2009. The trial aims to measure comparative wheat yields in response to different rates and strategies of P applications over time. Table 1 shows the P application

rates on each of the 10 treatments over the 4 years of the study. Deep banded DAP is used as the P supply with the N balanced using urea to give a total at 18 kg N/ha. The trial was sown on 10 June with Wyalkatchem wheat at 60 kg/ha.

Dry matter production was sampled on 9 September (end of tillering). Grain yield and grain quality were measured at maturity. All plots received standard weed management.

## What happened?

Colwell Ρ assessments taken before seeding showed a range in P levels (34-53 mg/kg), but with no relationship between 2009 applied P and 2010 measured levels. This was an increase from the 2009 preseeding site measure of 27 mg/kg Colwell P. There was a dry matter response where 10 and 20 kg/ha of P was applied; however this did not result in a yield increase. None of the P treatments affected grain quality with test weight more than 80 kg/hL and screenings less than 2.2%. The low protein levels are indicative of a season such as 2010.

Table 1 Phosphorus (kg/ha) applied over the 4 year duration of the project, 2009 - 2012

| 4 YEAR PLAN | Year 1 | Year 2 | Year 3 | Year 4 |  |
|-------------|--------|--------|--------|--------|--|
| Treatment   | 2009   | 2010   | 2011   | 2012   |  |
| 1           | 20     | 20     | 20     | 20     |  |
| 2           | 0      | 0      | 0      | 0      |  |
| 3           | 10     | 0      | 0      | 0      |  |
| 4           | 5      | 10     | 0      | 0      |  |
| 5           | 5      | 5      | 10     | 0      |  |
| 6           | 5      | 5      | 5      | 10     |  |
| 7           | 5      | 0      | 0      | 0      |  |
| 8           | 5      | 5      | 0      | 0      |  |
| 9           | 5      | 5      | 5      | 0      |  |
| 10          | 5      | 5      | 5      | 5      |  |

Table 2 Dry matter (DM), wheat yield and quality in response to applied P rates in 2009 and 2010

| 2009 P (kg/ha)<br>Treatment | 2010 P (kg/ha)<br>Treatment | DM<br>9 Sept<br>(t/ha) | Grain<br>Yield<br>(t/ha) | Test Wt<br>(kg/hL) | Screenings<br>(%) | Protein<br>(%) |
|-----------------------------|-----------------------------|------------------------|--------------------------|--------------------|-------------------|----------------|
| 20                          | 20                          | 2.1                    | 2.8                      | 81.5               | 1.7               | 9.0            |
| 0                           | 0                           | 1.4                    | 2.7                      | 80.4               | 2.1               | 9.4            |
| 10                          | 0                           | 1.3                    | 2.7                      | 81.5               | 2.2               | 9.2            |
| 5                           | 10                          | 1.7                    | 2.8                      | 81.3               | 1.9               | 9.0            |
| 5                           | 5                           | 1.8                    | 2.8                      | 81.1               | 1.6               | 9.0            |
| 5                           | 5                           | 1.5                    | 2.7                      | 80.8               | 2.0               | 9.0            |
| 5                           | 0                           | 1.4                    | 2.7                      | 79.6               | 2.1               | 9.1            |
| 5                           | 5                           | 1.5                    | 2.6                      | 80.7               | 2.1               | 9.1            |
| 5                           | 5                           | 1.6                    | 2.7                      | 79.5               | 2.2               | 9.2            |
| 5                           | 5                           | 1.7                    | 2.7                      | 80.9               | 2.0               | 9.3            |
| LSD (P=0.05)                |                             | 0.4                    | NS                       | NS                 | NS                | NS             |

### What does this mean?

Despite the increase in dry matter in response to 20 kg of P (40 kg over 2 years), compared to the nil and several of the 5 kg/ha treatments, this did not equate to a gain in grain yield. This would indicate that the variance measured in the pre-seeding Colwell P tests was adequate to produce a 2-3 t/ha crop. Similar results were found last year in this trial (EPFS 2009 pg 156-157) and in trials done by

Sean Mason (EPFS 2009 pg 150-153). Alternatively there may be a constraining issue in this soil type or other nutrient deficiency as yet unidentified resulting in a water use efficiency figure around 60% of optimum.

Soil analysis will continue over the next 2 seasons to continue measuring any changes in soil P and if there is any impact of differing P regimes on crop performance. The results from this trial will undergo a financial assessment to evaluate the merits of each system in subsequent years.

# **Acknowledgements**

We gratefully acknowledge the help of Sue Budarick, Alex Watts and Jack Pecina for their technical assistance during the year.

