Faba bean fertiliser trial – Spring Ridge 2016

Bill Manning¹, Andrew Verrell² and Tim Weaver³,

¹North West Local Land Services, Gunnedah ²NSW DPI, Tamworth ³formerly NSW DPI, now CSIRO, Narrabri

Location

Key findings

- Adding phosphorus (P) did not significantly increase yield or seed weight in the varieties PBA Warda^(b) and PBA Nasma^(b).
- PBA Nasma $^{\oplus}$ produced greater yield and seed size than PBA Warda $^{\oplus}.$

IntroductionThis experiment aimed to study the effect of nitrogen (N) and phosphorus (P) application
separately and in combination on the growth and yield of faba bean. A small amount of N at
sowing might improve yield through faster establishment and groundcover. There is also little
local data available on faba bean response to additional P.

Site details

'Nowley', Spring Ridge

Co-operator The University of Sydney

Soil type and nutrition The experiment was undertaken on a known P-responsive vertosol

Site soil chemical characteristics for 0–15 cm depth at Nowley in 2016.

Characteristic	Depth (0–15 cm)
pH _{ca}	7.7
Zinc (mg/kg)	1.5
Sulfur (mg/kg)	14
Phosphorus (Colwell) (mg/kg)	14
Organic carbon (OC) (%)	1.3
Cation exchange capacity (CEC) (meq)	48

Trial design	A randomised split block design was used with variety as the main blocks, N as subplot and P as the sub-subplots; with three replications. Fertiliser treatments were applied immediately pre-sowing and seed was sown offset from fertiliser rows by 5 cm. Reflectance was measured on 25 July using an N Tech [®] Industries, Inc. Model 505 GreenSeeker Hand Held [™] Optical Sensor Unit and a biomass cut was taken on 10 October at late podding. Grain samples from harvest were used to measure seed weight.	
Sowing date	5 May	
Plant population	Target 20 plants/m ²	
Weed management	Post-sowing/pre-emergence: Terbyne [®] 1 kg/ha (terbuthylazine 750 g/kg) applied on 5 May Post-emergence: clethodim 500 mL/ha (clethodim 240 mL/L) applied 15 July with mancozeb (see Disease management section below).	
Disease management	 Targeting rust (<i>Uromyces vicia-fabae</i>), and chocolate spot (<i>Botrytis fabae</i> and <i>B.cinerea</i>): Dithane[™] @ 2 kg/ha (mancozeb 750 g/kg) applied on 4 July Dithane[™] @ 1 kg/ha (mancozeb 750 g/kg) applied on 15 July Unite[®] 720 @ 1.5 L/ha (chlorothalonil 720 g/L) applied on 2 August Spin flo[®] @ 500 mL/ha (carbendazim 500 g/L) applied on 2 September 	

Insect management *Heliothis* sp. pressure was low and no insecticides were applied.

Harvest date 21 November

Treatments

Varieties (2)	PBA Warda $^{\circ}$, PBA Nasma $^{\circ}$	
Nitrogen	0 and 10 kg N/ha applied as urea	
Phosphorus	hosphorus 0, 5, 10 and 20 kg P/ha applied as triple superphosphate	

Results Establishment

Faba bean establishment of 19 plants/m² was achieved, close to the target (20 plants/m²) and there were no significant (P<0.05) differences in establishment due to N, P or variety.

Reflectance and dry matter

No significant differences (*P*<0.05) in reflectance or biomass due to N, P or variety occurred, indicating that plant growth was not influenced by the treatments applied.

Grain yield and seed weight

Overall, PBA Nasma^(b) gave significantly higher (*P*<0.05) yield and seed size than PBA Warda^(b) (Table 1) and N application unexpectedly reduced yield, with zero N plots yielding significantly (*P*<0.05) more (3.6 t/ha) compared with plus N plots (3.2 t/ha). Overall, adding P made no significant difference to yield (Table 2), although there was a trend to higher yield with the highest (40 kg/ha) P application.</sup></sup>

Table 1. Yield and seed size of two faba bean genotypes at Nowley in 2016.

Variety	Yield (t/ha)	Seed size (g/100 seeds)
PBA Nasma ⁽¹⁾	3.6ª*	80.1ª*
PBA Warda ⁽⁾	3.1 ^b	64.8 ^b

*letters denote significance at *P*<0.05

Phosphorus applied (kg/ha)	Yield (t/ha)
0	3.3ª*
5	3.4ª
10	3.3ª
20	3.6ª

Table 2. Phosphorus application and yield across two genotypes of faba bean at Nowley in 2016.

*letters denote significance at P<0.05

Conclusions In this experiment, additional P did not increase yield, however, on a lower P site, a positive response to P might occur. The reduction in yield caused by adding N might be due to reduced nodulation in N-treated plots, although nodulation was not measured in this trial. The greater yield and seed size of PBA Nasma^(h) compared with PBA Warda^(h) supports other experimental data.

Acknowledgements

This research was part of the project *Northern pulse agronomy initiative – NSW* (DAN00171) with joint investment by NSW DPI and GRDC. Thanks to Michael Nowland, Gerard Lonegran, Peter Perfrement and Matt Grinter, NSW DPI staff, for technical assistance.