

Nitrogen response of eight wheat varieties – Gilgandra 2015

Greg Brooke

NSW DPI, Trangie

Introduction

Nitrogen (N) is the nutrient most required by wheat. It is essential for growth and development, yield and grain protein levels. In recent seasons in Central West NSW there has been a significant trend towards very low grain protein with more than 30% of grain receivals meeting ASW or lower specifications. Protein levels of <10.5% in a prime hard variety usually indicate that insufficient N levels have not only limited grain protein concentrations, but also yield. Soil testing for N levels before sowing remains an important budgeting tool. It is the most useful indicator of whether additional applied N, to support crop growth and to maximise yield and grain protein potential, is needed within a given season. Consideration must also be given to starting soil water and target yield. This trial aimed to determine the effect of N application rates on the yield and grain quality of eight popular bread wheat varieties at Gilgandra in central NSW in 2015.

Site details

Location:	Gilgandra
Co-operator:	Kevin Kilby
Soil type:	Red loam
2014 crop:	Canola
2013 crop:	Wheat
Sowing date:	12 May 2015
Starting moisture:	Very wet at sowing to below 120 cm (216 mm rain recorded January–May)
In-crop rainfall:	196 mm June–October
Fertiliser:	90 kg/ha Granulock Z Extra at sowing
Fungicide:	2.5 L/t flutriafol (500 g/L) fungicide on fertiliser; prothiocconazole (210 g/L) + tebuconazole (210 g/L) at 300 mL/ha on 21 August and 15 September
Starting N:	104 kg N/ha (0–60 cm)
Harvest date:	16 November 2015

Treatments

Variety	Dart [®] , EGA Gregory [®] , Kiora [®] , Lancer [®] , Spitfire [®] , Sunmate [®] , Suntop [®] and Viking [®]
Nitrogen (N)	0, 20, 40, 80, 160 kg N/ha at sowing, and 40+40 (40 kg N/ha applied at both sowing and GS31). All N applied as urea.

Key findings

This site was very responsive to nitrogen (N) application. Yield and protein increased in all varieties, even up to the highest applied rate of 160 kg N/ha.

Yield averaged across varieties increased from 2.80 t/ha with no application of N up to 3.58 t/ha with the application of 160 kg N/ha.

Grain protein levels across varieties rose from 9.8% (nil applied N) to 12.4% with 160 kg N/ha.

Screening levels were not affected by N application rates up to 80 kg N/ha but rose slightly from 2.7% to 3.8% with 160 kg N/ha.

Kiora[®] was the only variety which produced screening levels above 5% which were exacerbated by higher N application rates of 80 and 160 kg N/ha.

Results

Table 1. Effect of various nitrogen treatments on the yield, grain protein and screening levels of eight bread wheat varieties – Gilgandra 2015

Variety	N treatment	Predicted yield (t/ha)	Protein (%)	Screenings (%)
Dart	0	2.71	10.0	3.4
	20	2.99	10.3	1.9
	40	3.25	10.3	2.7
	40 + 40	3.32	10.9	2.6
	80	3.41	11.0	2.3
	160	3.48	11.8	5.0
EGA Gregory	0	2.88	9.2	2.3
	20	3.17	9.6	1.9
	40	3.43	9.9	1.5
	40+40	3.49	10.6	1.5
	80	3.58	11.2	2.0
	160	3.65	12.2	3.0
Kiora	0	2.57	9.6	4.4
	20	2.86	9.7	4.1
	40	3.11	10.4	4.7
	40+40	3.18	11.0	5.1
	80	3.27	11.4	9.0
	160	3.34	13.2	9.4
Lancer	0	2.73	10.8	1.3
	20	3.02	10.6	1.7
	40	3.27	11.0	1.1
	40+40	3.34	11.3	1.4
	80	3.43	11.7	1.1
	160	3.50	12.9	1.5
Spitfire	0	2.63	10.8	2.8
	20	2.92	10.8	2.0
	40	3.18	10.9	2.1
	40+40	3.24	11.8	1.7
	80	3.33	11.8	1.3
	160	3.40	13.5	1.8
Sunmate	0	2.86	9.7	2.7
	20	3.14	9.8	2.4
	40	3.40	9.9	2.0
	40+40	3.47	10.3	2.0
	80	3.56	10.3	1.7
	160	3.63	11.5	2.5
Suntop	0	2.94	9.5	2.4
	20	3.23	9.8	2.3
	40	3.49	9.9	2.0
	40+40	3.55	10.4	1.9
	80	3.64	10.5	1.9
	160	3.71	12.1	3.9
Viking	0	3.12	8.7	1.7
	20	3.41	9.0	1.2
	40	3.67	10.1	1.5
	40+40	3.73	10.6	2.4
	80	3.82	11.1	2.2
	160	3.89	12.1	3.3
LSD (P = 0.05)		0.120	0.66	1.87

Summary

There were strong responses in yield and grain protein to all rates of applied N in all varieties.

Conditions at sowing were very wet. There was no effective in-crop rainfall after August which, combined with temperatures above 35 °C in September, resulted in a hard finish to the season. Despite this, moderate grain yields were obtained and screening levels were generally low with no negative effect from even moderate to high N application rates except for increased screening levels at 80 kg N/ha and 160 kg N/ha in Kiora.

Acknowledgements

This research was funded by NSW DPI and GRDC under project DAN00129: Variety specific agronomy packages for new varieties in NSW. Thanks to Gavin Melville for biometric analysis and Tracie Bird-Gardiner, Ryan Potts, Lizzie Smith, Paddy Steele, Sally Wright and Rachel Hayden for technical assistance.