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Key messages
•	 Proximal sensing reflectance 

data predicts soil moisture 
with reasonable accuracy 
from samples taken at 
depths (0-10, 10-30, 30-60, 
60-100 cm) across 46 Eyre 
Peninsula locations.

•	 Moderate relationships were 
found between % organic 
carbon, pH(water) and soil 
spectral data. 

•	 Reflectance data have been 
proven useful for predicting 
the amount of crop 
macronutrients, including 
nitrogen, phosphorus, 
potassium and sulphur.

•	 Further experimental data is 
required to test the reliability 
of the existing predictive 
models of soil absorbance 
and crop reflectance as a 
means to predict nutrient 
content.

Why do the trial?
This research was done to develop 
predictive formulas that can be 
used by growers to estimate in-
season soil nutrients from soil 
samples taken at different depths 
and crop nutrient content from 
proximal sensing (PS) data.

The upper Eyre Peninsula (UEP) 
is a challenging environment 
for growers, due to the irregular 
rainfall patterns which are coupled 
with lower soil fertility. Additionally, 
calcareous soils with poor 
structure and low water holding 
capacity provide additional 
restrictions for plant growth, as 
growers currently use granular 
fertilisers which require good soil 
moisture conditions to enable 
the uptake of nutrients. Topsoils 
from calcareous soils may dry 
quickly after rain events, which 
may explain poor water use and 
nutrient extraction efficiency. 

PS technologies have the potential 
to support grower’s nutrient 
management decisions by 
monitoring in-season soil and crop 
water and nutrient content (Allen 
et al. 2017, Arsego et al. 2017). PS 
uses a wide range of wavelengths 
to predict soil and crop nutritional 
status in a non-destructive, 
quick, and inexpensive way. PS 
technology is mostly limited to 

laboratory use. The development 
of small, portable PS devices may 
allow the use of this technology 
in farm paddocks in the near 
future. In this study, we combined 
different UEP trials to develop 
predictive models for PS for crop 
nitrogen, crop nutrient content 
and soil moisture. 

How was it done?
A total of 15 trials were established 
across 3 seasons (2017-19) 
in Cummins, Lock, Minnipa, 
Nunjikompita, Streaky Bay, 
Cungena and Condada (Table 
1). A randomised complete block 
design with three replicates was 
used for all trials. 

Tissue samples
Biomass cuts were sampled at 
GS31 (stem elongation) at the 15 
trials. The GS31 biomass cuts (1/2 
m2) were dried at 35 degrees in the 
oven until a constant weight. The 
dry biomass samples were ground 
and sent to the laboratory for 
determination of nitrogen content. 
The ground tissue samples of GS31 
biomass cuts from Nunjikompita, 
Cungena, Streaky Bay and 
Condada were tested for macro 
and micronutrients (nitrogen, 
phosphorous, potassium, copper, 
magnesium, iron, manganese, 
sodium, boron, sulphur and zinc) 
content at the laboratory. 
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Table 1. Trial details for the 15 EP trials tested in 2017-19.  
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Season

Site
Grower

Soil type
Plot size

Sowing 
date Cultivars Treatments

Spectral 
probe used 
(number of 
samples)

GSR
(mm)

2017

Cummins 
Modra

Clay loam
5 m x 1.6 m 

x 3 reps

21 June
Scepter, Mace, 

Halberd and 
Spear

Rainfed, Irrigation (50 mm), 
non-fertilised and 50 N at 

stem elongation

FOV* (48), 
Leaf clip (48)

278

2017

Lock
Burrows

Grey sandy loam
5 m x 1.6 m 

x 3 reps

6 June
Scepter, Mace, 

Halberd and 
Spear

Rainfed, Irrigation (50 mm), 
non-fertilised and 50 N at 

stem elongation

FOV* (48), 
Leaf clip (48)

191

2017

Minnipa
MAC N10

Red sandy clay 
loam

5 m x 1.6 m 
x 3 reps

30 May
Scepter, Mace, 

Halberd and 
Spear

Rainfed, Irrigation (50 mm), 
non-fertilised and 50 N at 

stem elongation

Leaf clip 
(48)

141

2018

Cummins
Green

Clay loam
5 m x 1.6 m 

x 3 reps

15 May
Scepter, Mace, 

Halberd and 
Spear

Rainfed, Irrigation (50 mm), 
non-fertilised and 120 N at 

stem elongation

Leaf clip 
(48)

288

2018

Lock
Burrows

Grey sandy loam
5 m x 1.6 m 

x 3 reps

22 May
Scepter, Mace, 

Halberd and 
Spear

Extra 20 mm of irrigation at 
sowing. Rainfed, Irrigation 
(50 mm), non-fertilised and 
120 N at stem elongation

Leaf clip 
(48)

231

2018

Minnipa
MAC N10

Red sandy clay 
loam

5 m x 1.6 m 
x 3 reps

22 May
Scepter, Mace, 

Halberd and 
Spear

Extra 20 mm of irrigation at 
sowing. Rainfed, Irrigation 
(50 mm), non-fertilised and 
120 N at stem elongation

FOV* 
(48)

178

2018

Nunjikompita
Howard

Red calcareous 
sandy loam

1.6 m x 10 m 
x 3 reps

8 May Scepter

50 kg/ha MAP/DAP with the 
seed, 50 kg/ha MAP/DAP 3 
cm below the seed, normal 
seeding rate (60 kg/ha) and 
high seeding rate (80 kg/ha)

Leaf clip 
(24)

128

50 kg/ha DAP, 50 kg/ha MAP, 
50 kg/ha Urea, 100 kg/ha 

TSP, 200 kg/ha SSP, 200 kg/
ha Complete Nutrient Mix, 

control at sowing

Leaf clip 
(36)

Fluid Phosphorous 
(Phosphoric Acid) normal 

rate (equivalent to 5 kg/ha), 
high rate (equivalent to 8 kg/

ha), Granular phosphorus 
(Triple P, 50 kg/ha) at sowing

Leaf clip 
(24)



Eyre Peninsula Farming Systems 2019 Summary164

2019

Condada
Cook

Red sandy loam
12 m x 2 m 

x 3 reps

6 May Scepter

Phosphoric acid applied at 
sowing (water rate of 80 L/
ha): 0, 5, 10 and 40 units P; 
2. Granular urea applied by 
stem elongation (units N): 0, 

10, 30, 60

FOV* (48)

182

50-100 kg/ha DAP, 200 kg/ha 
DAP with high seeding rate 
(80 kg/ha), 50-100-200 kg/

ha MAP balanced with urea, 
50 kg/ha DAP with fluid trace 
elements (Zn Cu, Mn), 50 kg/
ha MAP balanced with urea 
and fluid trace elements (Zn 

Cu, Mn), normal seeding 
rate (60 kg/ha), high seeding 
rate (80 kg/ha), Fluid fertiliser 
(phosphoric acid) with fluid 
trace elements (Zn Cu, Mn) 

applied at sowing

FOV* (39), 
contact 

probe (39)

2019

Streaky Bay
Wheaton

Grey calcareous 
sandy loam
12 m x 2 m 

x 3 reps

8 May Scepter

Phosphoric acid applied at 
sowing (water rate of 80 L/
ha): 0, 5, 10 and 40 units P; 
2. Granular urea applied by 
stem elongation (units N): 0, 

10, 30, 60 

FOV* (48), 
contact 

probe (48)

206

50-100 kg/ha DAP, 200 kg/ha 
DAP with high seeding rate 
(80 kg/ha), 50-100-200 kg/

ha MAP balanced with urea, 
50 kg/ha DAP with fluid trace 
elements (Zn Cu, Mn), 50 kg/
ha MAP balanced with urea 
and fluid trace elements (Zn 

Cu, Mn), normal seeding 
rate (60 kg/ha), high seeding 
rate (80 kg/ha), Fluid fertiliser 
(phosphoric acid) with fluid 
trace elements (Zn Cu, Mn) 

applied at sowing

FOV* (39), 
contact 

probe (39)

2019

Cungena
Tomney

Grey calcareous 
sandy loam
12 m x 2 m 

x 3 reps

7 May Scepter

Phosphoric acid applied at 
sowing (water rate of 80 L/
ha): 0, 5, 10 and 40 units P; 
2. Granular urea applied by 
stem elongation (units N): 0, 

10, 30, 60 

FOV* (48), 
contact 

probe (48)

158

50-100 kg/ha DAP, 200 kg/ha 
DAP with high seeding rate 
(80 kg/ha), 50-100-200 kg/

ha MAP balanced with urea, 
50 kg/ha DAP with fluid trace 
elements (Zn Cu, Mn), 50 kg/
ha MAP balanced with urea 
and fluid trace elements (Zn 

Cu, Mn), normal seeding 
rate (60 kg/ha), high seeding 
rate (80 kg/ha), Fluid fertiliser 
(phosphoric acid) with fluid 
trace elements (Zn Cu, Mn) 

applied at sowing

FOV* (39), 
contact 

probe (39)

*FOV = field of view/field gun
DAP = di ammonium phosphate, MAP = mono ammonium phosphate, SSP = single super phosphate, TSP = triple 
super phosphate
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Soil samples
Soil samples were collected from 
the 15 trials and from 36 additional 
points in the EP soil moisture 
probe network paddocks. Soil 
moisture was calculated by 
using gravimetric method for all 
samples, which were collected 
with three sub-samples per 
replicates at sowing, and one 
sample per plot at maturity. In the 
case of the soil moisture probe 
network, soil cores up to 100 cm 
were collected pre-sowing and 
at harvest. A volumetric estimate 
was also calculated considering 
the bulk density information from 
the nearest APSOIL sites. At 
Cummins, Lock, Minnipa, Streaky 
Bay, Condada and Cungena soil 
samples were collected up to 90-
100 cm depth. At Nunjikompita, 
the soil sampling depth was limited 
by limestone at a depth of 60 cm 
onwards. At all sites, additional soil 
samples were collected using the 
same methods described above. 
However, these soil samples were 
dried in an oven (35 degrees until 
constant weight), sieved and 
sent to the laboratory for nutrient 
content.

Spectral data collection
Spectral data was collected for 
biomass and soil samples using 
a PS technology (i.e. a SR-3500 
spectroradiometer from Spectral 
Evolution). Readings with the 
spectroradiometer were done with 
clear sky by collecting four spectral 

readings per plot using a 25o (field 
of view) bare fibre optic in the field 
at noon time (10am- 3pm) for the 
case of biomass. Furthermore, 
on cloudy days, a leaf clip probe 
was used to measure four random 
young leaves per plot. Lastly 
at Cungena, Streaky Bay and 
Condada trials, spectral data was 
only collected on ground tissue 
samples at GS31 using a contact 
probe. Soil spectral data was 
recorded using a contact probe, 
measuring four readings per soil 
sample, for both gravimetric and 
oven dried soil.

Spectral data analysis
Spectral data were pre-treated 
using standard methodology 
(Esbensen and Swarbrick 2018). 
Each spectral dataset was 
randomly split in two subsets: 1) 
calibration and 2) validation. The 
calibration subset represented 
75 % of the whole dataset 
and was used to develop the 
predictive model. The predictions 
were calculated using partial 
least square (PLS) regression 
in the Unscrambler X (CAMO 
version 10.5) to calculate (i) the 
relationship between spectral 
data and nutrient data and (ii) 
the relationship between spectral 
data and soil nutrient data. The 
validation subset consisted of 25 
% of the dataset and was used to 
evaluate the predictive power of 
the PLS model.

What happened?
Spectral readings performed 
with the contact probe
Soil moisture
As a first step, a multi-site PLS 
of soil moisture versus spectral 
data analysis was undertaken 
considering 46 locations across 
the EP. The model had a moderate 
predictive power R2 = 0.7 with 
and error of the estimation of 10.4 
mm (Figure 1a). This relationship 
showed higher variability for 
values over 60 mm. The wider 
spread may be attributed to: 1) 
the greater variability of soil types 
and soil moisture conditions at 
pre-sowing and post-harvest 
across the Eyre Peninsula and 
2) the lower EP soil types which 
are characterised by high soil 
moisture and clay content. 

Soil nitrate
A multi-site analysis considering 
sites from the soil moisture probe 
network and 2019 trials was 
performed to test the relationship 
between soil nitrate and soil 
spectral data (Figure 2). Similar 
to soil moisture, a moderate 
accuracy model (R2 = 0.7-0.75) 
was obtained for the relationship 
between soil nitrate and spectral 
readings (Figure 2). Further studies 
should focus on increasing range 
of variability and further validate the 
predictive model across different 
environment conditions, soil types 
and soil moisture scenarios. 
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Figure 1a. Relationship between soil moisture (reference, mm) and the spectral (1b predicted) data from the 46 
locations on the EP in 2018. RMSE = root mean square error. The black dotted line is the 1:1 line.
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 Figure 2a. Relationship between soil nitrate (reference, mg/kg) and the spectral (2b predicted) data from the 46 
locations on the EP in 2018. RMSE = root mean square error. The black dotted line is the 1:1 line. 

Soil phosphorus buffering index
The relationship between soil 
phosphorus buffering index (PBI) 
and soil spectral data was tested 
using the sites from the soil 
moisture probe network and 2019 
trials (Figure 3). The calibration 
model was able to explain more 
than 80% of the variability in the 
soil phosphorus buffering index 
(Figure 3a), as expected, a drop of 
0.1 R2 can be observed between the 
calibration and validation datasets 
(Figure 3b). It is important to note 
that the soils that were used for the 
analysis included both calcareous 
and non-calcareous soils. 

Other soil characteristics 
The relationship between spectral 
data and soil nutrients was further 
tested, including but not limited 
to nutrients such as: pH (Figure 
4 a-b) and % organic carbon 
(Figure 4 c-d). The calibration 
models explained between 70 and 

80% of the variability in the soil 
pH (Figure 4a) and % of organic 
carbon (Figure 4b). In this case, 
the R2 and accuracy were similar 
between calibration and validation 
datasets (Figure 4 a-d).
 
Phosphorus, potassium, sulphur 
and copper in plant tissue
Potassium and sulphur showed 
the highest relationship between 
the laboratory analysis and PS 
readings (Figure 5a-b and e-f), 
followed by phosphorus and 
copper (Figure 5c-d and g-h). Of 
all the nutrients, copper showed 
the lowest predictability and the 
highest difference between the 
calibration and validation datasets 
(Figure 5g-h). The use of the 
contact probe on ground tissue 
had a higher predictive power for 
potassium, sulphur, copper and 
phosphorus compared to the leaf 
clip predictions at Nunjikompita in 

2018 (EPFS Summary 2018 p197), 
possibly due to better nutrient 
mobility within the plant. 

Spectral readings performed 
with field gun and leaf clip 
probes
Nitrogen in plant tissues (N%)
A multi environment partial least 
square analysis was performed 
considering 2017-19 trial data 
from Cummins, Lock, Minnipa, 
Nunjikompita, Streaky Bay, 
Cungena and Condada to 
establish a strong relationship 
between nitrogen (N%) and 
spectral data (Figure 6). A total of 
349 and 243 samples were used to 
develop the calibration models for 
field of view/field gun and leaf clip. 
Samples were split between tissue 
samples scanned with the field of 
view/field gun (Figure 6a) and leaf 
clip spectral probes (Figure 6b). 

 

Figure 3a. Relationship of soil phosphorus buffering index and the spectral (3b predicted) data from the soil 
moisture probe network sites and 2019 trials. RMSE = root mean square error. The black dotted line is the 1:1 
line. 
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Figure 4. The relationship of lab measurements of soil pH (a-b) and organic carbon % (c-d) and the spectral 
(predicted) data from the soil moisture probe network sites and 2019 trials. RMSE = root mean square error. The 
black dotted line is the 1:1 line. 

 

Figure 5a-h. The relationship between crop nutrients (lab reference) and spectral data (predicted) data from 
Streaky Bay, Cungena and Condada in 2019 trials. RMSE = root mean square error. The black dotted line is the 
1:1 line. 
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What does this mean? 
This research indicates that PS 
technology could provide a useful 
method for estimating different 
soil characteristics of agronomic 
interest and crop nutrient content in 
a fast, cheap and reliable method. 
Given the number of samples and 
different locations used in the 
analysis, spectral predictions of 
soil moisture appear to be reliable 
and stable across EP. Special 
attention should be taken when 
working with wet soil conditions, 
especially with above 60 mm 
of soil moisture due to higher 
variability. Soil nutrients have 
shown a moderate relationship 
between lab and spectral 
estimates, especially phosphorus 
buffering index. Nutrients such as 
% organic carbon and pH, were 
also analysed and a calibration 
model is feasible for a wide variety 
of soils of the EP.

PS of crop nitrogen levels have 
shown a strong relationship 
across EP locations as previously 
observed in the literature (Ecarnot 
et al., 2013, Silva-Perez et al., 
2018). In calcareous soils, a 
moderately stable relationship 
was also found between PS data 
and nutrients other than nitrogen, 
especially potassium and sulphur. 

Further research and studies 
are needed to test the reliability 
of the predictive models which 
have been developed on soil and 
crop nutrient content over further 
seasons.
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