

Research update for ameliorating subsoil acidity using organic amendments

Dr Guangdi Li^{1,3}, Dr Jason Condon^{1,2,3}, Richard Hayes^{1,3}, Helen Burns¹, Richard Lowrie¹, Adam Lowrie¹, Andrew Price¹, Binbin Xu¹, Yan Jia¹ and Graeme Poile¹

¹ NSW Department of Primary Industries, Pine Gully Road, Wagga Wagga, NSW 2650

² Charles Sturt University, Boorooma Street, Wagga Wagga, NSW 2650

³ Graham Centre for Agricultural Innovation, Albert Pugsley Place, Wagga Wagga, NSW 2650

Key findings

- Lime increased soil pH and decreased the exchangeable aluminium percentage ($Al_{ex}\%$) significantly.
- Organic amendments could be used to ameliorate soil acidity, but they were not as effective as lime.
- Crops responded more to nutrient addition than amelioration of soil acidity with organic amendments in the short term.
- The long-term effect of organic amendments on soil acidity and crop yield response needs further investigation.

Introduction

A range of organic amendments have been tested to assess their effectiveness on ameliorating soil acidity in the field. The crop yield was monitored over three years from 2018 to 2020.

Site details

Location	Billa, Holbrook NSW
Soil type	Yellow chromosol (Isbell and National Committee on Soil and Terrain 2021)
Crops	Previous crops Crops in experiment period
	2015, Hyola® 970CL canola 2018, SF Edimax® CL canola
	2016, EGA Wedgetail® wheat 2019, LongReach Kittyhawk® wheat
	2017, EGA Wedgetail® wheat 2020, LongReach Kittyhawk® wheat

Rainfall (mm)	Year	In-crop rainfall (April–October)	Fallow rainfall (November–March)	Annual rainfall
	2018	213.6 mm	208.2 mm	421.8 mm
	2019	242.6 mm	171.8 mm	414.4 mm
	2020	509.5 mm	206.6 mm	716.1 mm
	Long-term average	386.4 mm	243.1 mm	629.4 mm

Fertiliser	Year	At sowing	Top-dressing
	2018	70kg mono-ammonium phosphate (MAP)	100 kg/ha urea
	2019	70kg MAP	100 kg/ha urea
	2020	70kg MAP	100 kg/ha urea

Ripping machine	3-D Ripper (5 tynes), designed and fabricated by NSW DPI (Li and Burns 2016)
Ripping width and depth	50 cm between rip lines; to 30 cm deep

Treatments	<p>There were 20 treatments in this experiment. All organic amendments were applied in the 10–30 cm depth with and without lime in contrast with surface lime in February 2018.</p> <p>All treatments were surface limed to pH 5.0 at 0–10 cm deep except for the surface lime treatment with a high lime rate (limed to pH 5.5). All surface lime was applied after deep ripping with amendments, then incorporated to 10 cm deep. Plot size: $5 \times 20 \text{ m} = 100 \text{ m}^2$. Buffer between plots: 2.5 m, buffer between blocks: 20 m.</p> <p>Organic amendments used in this experiment:</p> <ul style="list-style-type: none"> • Deep lucerne hay pellet at 15 t/ha. • Deep pea-hay pellet at 15 t/ha. • Deep wheat straw pellet at 15 t/ha. • Deep wheat straw pellet at 15 t/ha plus nitrogen [N], phosphorus [P] and sulfur [S] at 5N:2P:1.3S as per Kirkby et al. (2013). • Deep poultry litter pellets as Yates Dynamic Lifter at 10 t/ha. • Deep biochar pellet blended with pea hay 50:50 at 10 t/ha.
Measurements	<p>Soil samples were taken in autumn using a multi-core sampler (Lowrie et al. 2018) at 0–60 cm deep across a rip line and a large soil core (44 mm in diameter) for the 60–100 cm depth on a rip line at two locations in each plot. The rip lines were located with permanent marks. Soil samples were bulked into 10 cm increments from 0–40 cm and 20 cm increments from 40–100 cm. Soil pH_{Ca} and exchangeable cations were analysed as per Gillman and Sumpter (1986). Grain yield was obtained with a plot header.</p>
Results and discussion	<p>Rainfall pattern</p> <p>It was extremely dry in 2018 and 2019 with in-crop rainfall of 214 mm and 243 mm, respectively. In contrast, it was a wet year in 2020 with in-crop rainfall of 510 mm, compared with the long-term average in-crop rainfall of 386 mm (Figure 1).</p> <p>Organic amendments</p> <p>Results demonstrated that organic amendments could be used as soil ameliorants to increase soil pH and reduce aluminium (Al) toxicity in acidic soils. However, the magnitude of any pH increase varied between the type of organic amendments used, depending on their ash alkalinity, and the concentration of excess base cations, which reflects the concentration of stored organic acid anions (Tang and Yu 1999). All organic ameliorants slightly increased soil pH in 2018 and 2019 in the 10–20 cm and 20–30 cm depths where they were placed, but were not as effective as lime (Figure 2). The increase in pH was most likely due to OH⁻ being released during the decarboxylation process of organic matter and ammonification of organic nitrogen compounds. However, the subsequent nitrification process would decrease soil pH. Organic ameliorants also significantly reduced Al_{ex}% in the 10–20 cm and 20–30 cm depths in 2020, compared with the surface lime treatment (Figure 2). This is likely to be due to the soluble organic molecules from organic amendments combining with active Al³⁺ to form insoluble hydroxy-Al compounds (Haynes and Mokolobate 2001), which would reduce Al toxicity to plant root systems.</p>

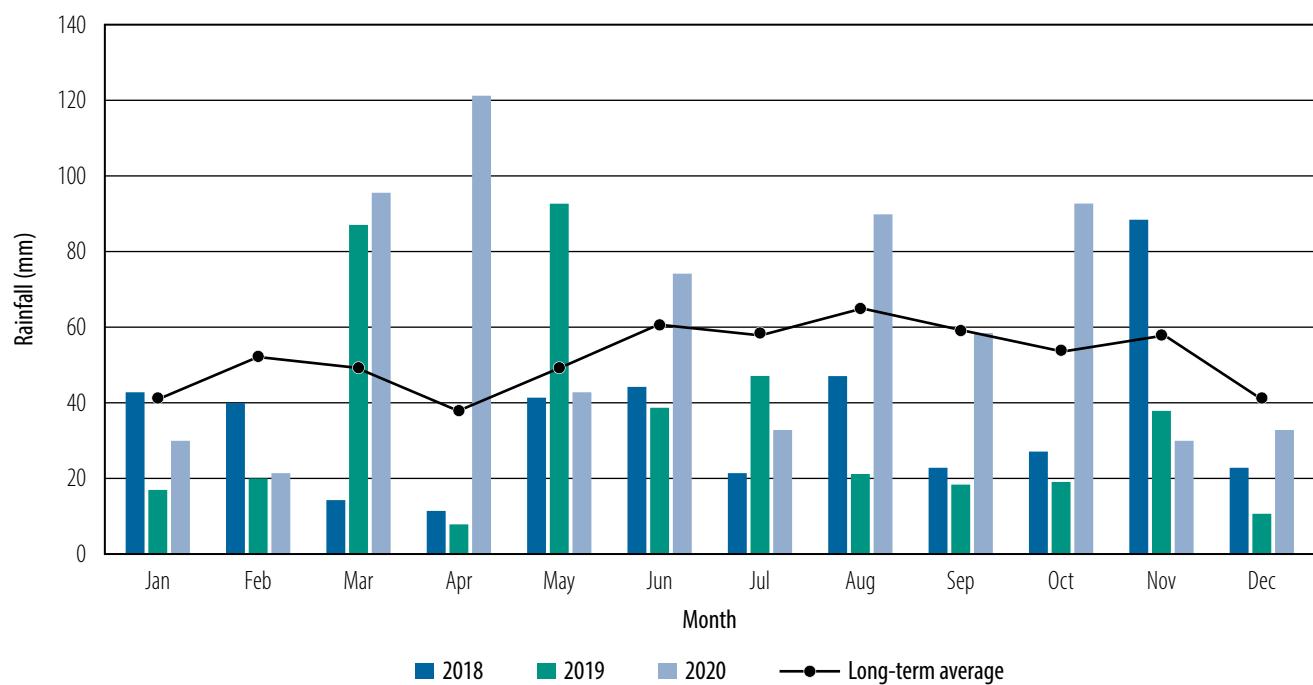
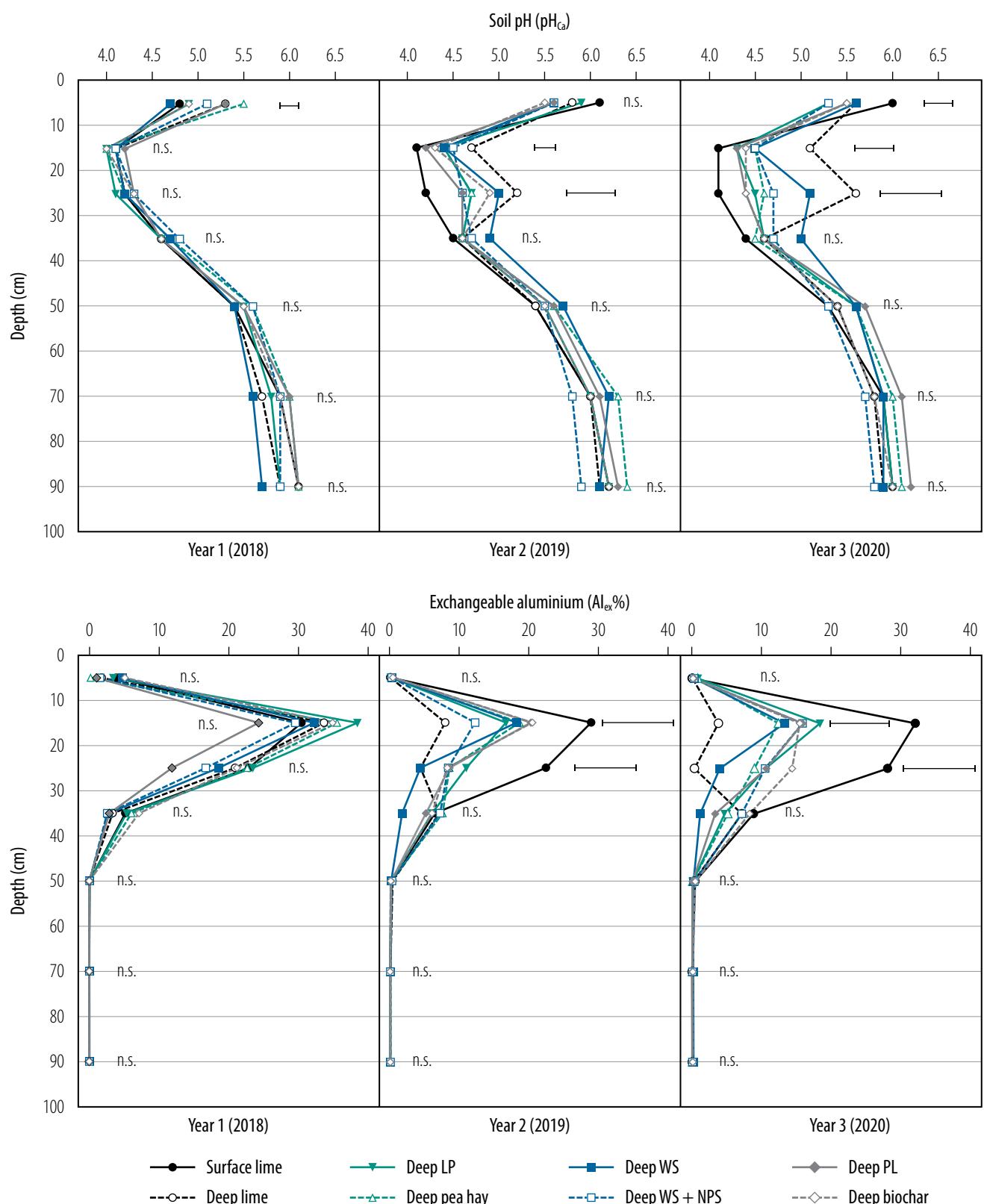
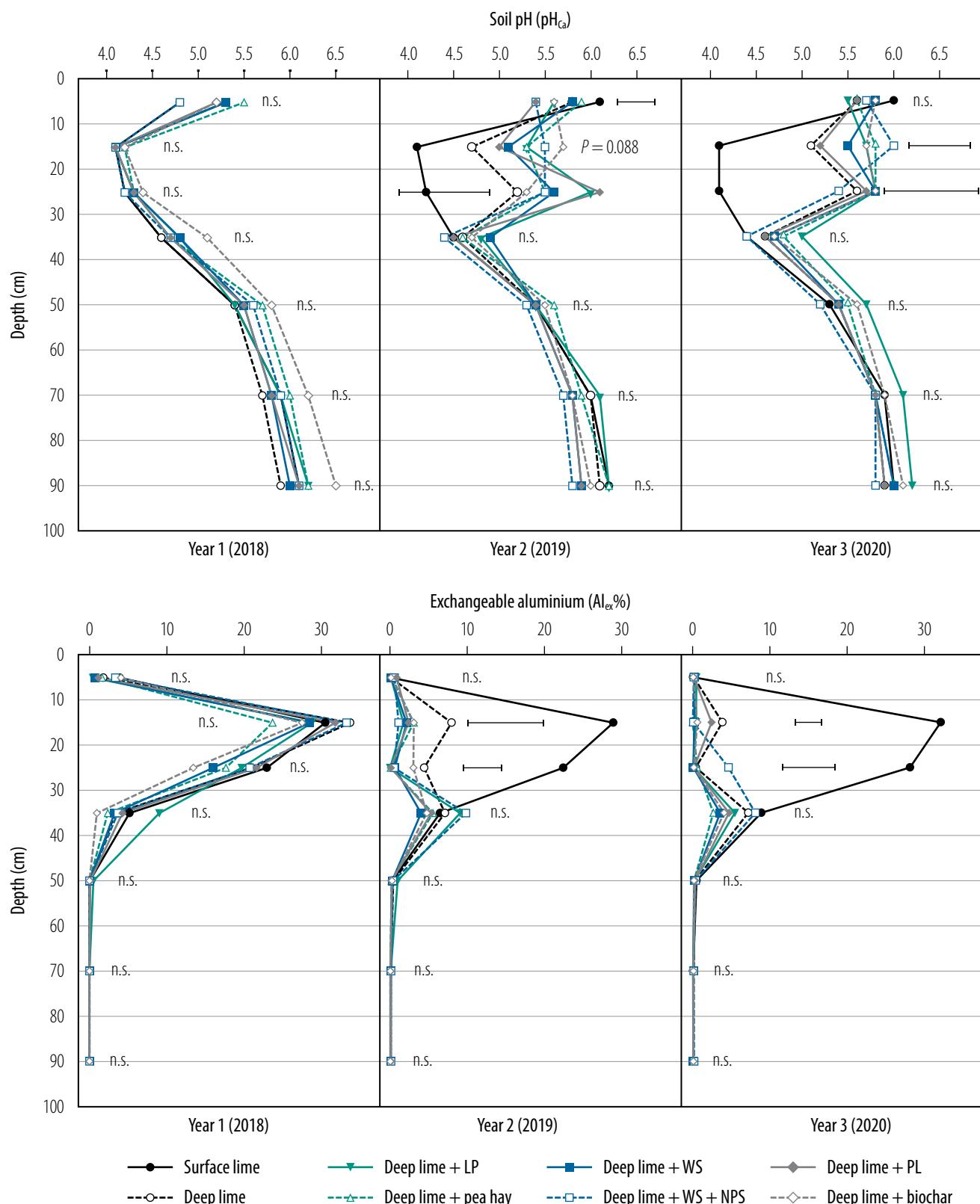



Figure 1 Monthly rainfall and long-term average rainfall at Holbrook, NSW.

Lime plus organic amendments


Adding lime to organic amendments increased soil pH in the 10–20 cm depth at $P = 0.09$ and 20–30 cm depth at $P < 0.05$, and reduced $\text{Al}_{\text{ex}}\%$ significantly at both depths ($P < 0.01$) compared with the surface lime treatment (Figure 3). There were no significant differences in soil pH and $\text{Al}_{\text{ex}}\%$ between deep lime only and deep lime combined with organic amendments, indicating that it was the lime rather than organic amendments that played the major role in ameliorating soil acidity. A number of soil column experiments demonstrated that adding lime with plant residues can facilitate alkalinity moving below the amended depth (Butterly et al. 2021). However, there was no evidence to show alkalinity movement down the soil profile in the field experiment (Figure 3).

LP, lucerne hay pellets; WS, wheat straw pellets; NPS, 5N:2P:1.3S; PL, poultry litter pellets.

→ Horizontal bars represent L.S.D. at $P = 0.05$; n.s. = not significant.

Figure 2 Soil pH (pH_{Ca}) (top row) and exchangeable aluminium percentage ($\text{Al}_{\text{ex}}\%$) (bottom row) under various organic ameliorants in years 1–3 at the Holbrook site, NSW.

LP, lucerne hay pellets; WS, wheat straw pellets; NPS, 5N:2P:1.3S; PL, poultry litter pellets.

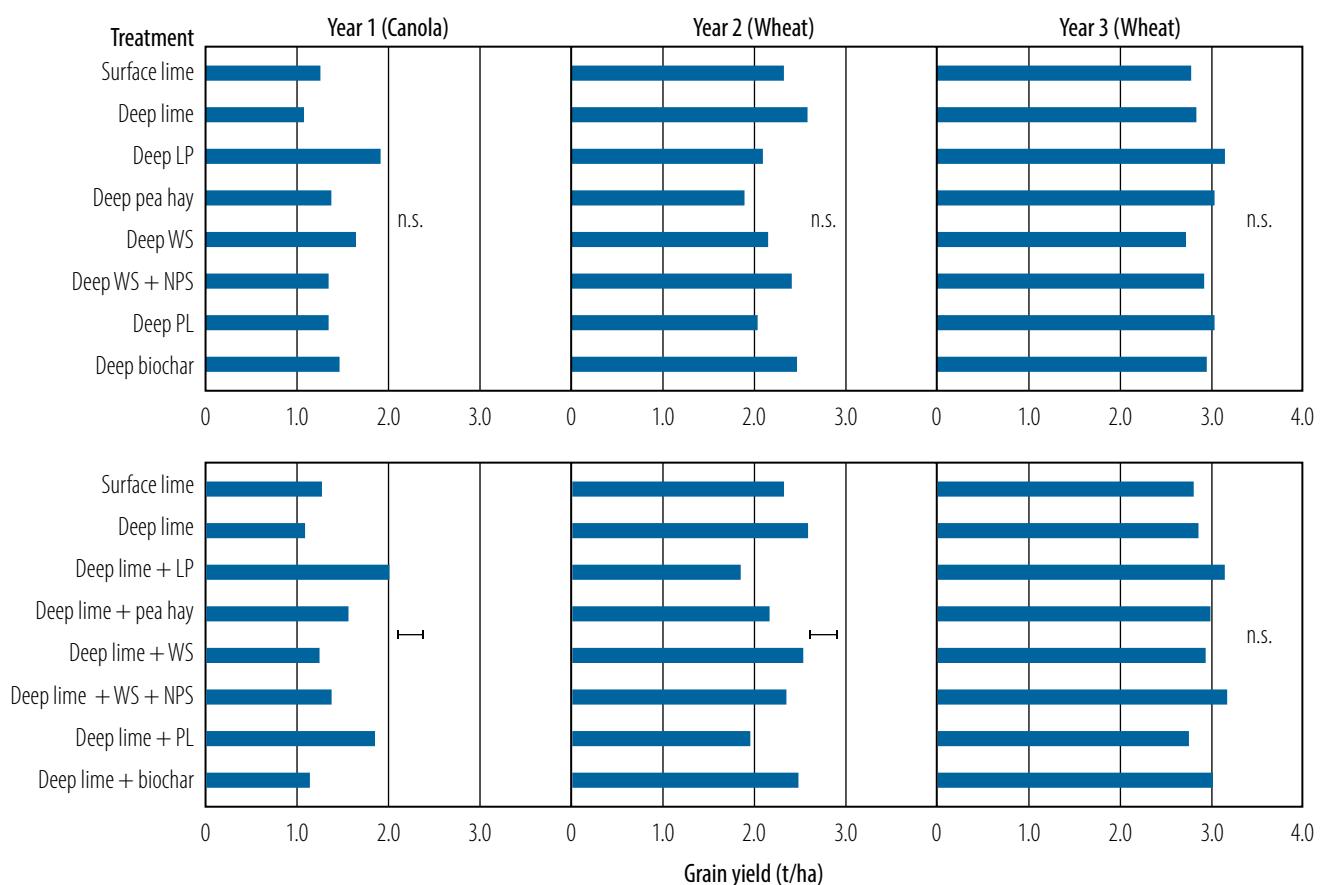

→ Horizontal bars represent *I.s.d.* at $P = 0.05$; n.s. = not significant.

Figure 3 Soil pH (pH_{Ca}) (top row) and exchangeable aluminium percentage ($\text{Al}_{\text{ex}}\%$) (bottom row) under various organic ameliorants with lime in years 1–3 at the Holbrook site, NSW.

Grain yield

The drought in 2018 and 2019 (Figure 1) greatly suppressed grain yield. The canola grain yield was less than 2.0 t/ha in 2018 and the wheat grain yield was under 2.6 t/ha in 2019 (Figure 4). In contrast, wheat yield was up to 3.2 t/ha in 2020 – a wet year (Figure 4).

In the first year, 2018, the deep lucerne hay pellet treatments with and without lime had the highest yield, followed by the deep poultry litter treatment with lime (Figure 4), probably due to nutrient effect rather than ameliorating soil acidity. Those treatments with higher grain yield in 2018 tended to have low yields in 2019 due to severe drought. For example, both the lucerne hay pellet and poultry litter with added lime treatments had lower grain yield compared with other organic amendments in 2019. This is probably related to soil water dynamics. In 2020, a wet year, no difference in grain yield was found between treatments at the site. It appeared that the effect of soil acidity on root function was much less when soil water was not a limiting factor.

LP, lucerne hay pellets; WS, wheat straw pellets; NPS, 5N:2P:1.3S; PL, poultry litter pellets.

Horizontal bars represent L.s.d. at $P = 0.05$; n.s. = not significant.

Figure 4 Grain yield (kg/ha) under organic amendments (top row) and lime plus organic amendments (bottom row) in years 1–3 at the Holbrook site, NSW.

Conclusions

Deep lime increased soil pH and decreased $Al_{ex}\%$ significantly in the 10–20 cm and 20–30 cm depths in 2019 and 2020. Organic amendments could increase pH, but were not as effective as lime, however, organic amendment decreased $Al_{ex}\%$ significantly. Crop yields responded more to nutrients than to ameliorated soil acidity in the first year (2018). However, the nutrient effect under organic amendment treatments was suppressed by lack of soil moisture in the second year (2019). The long-term effect of organic amendments on crop yield needs further investigation.

References

Butterly CR, Costello B, Lauricella D, Sale P, Li G and Tang C 2021. Alkalinity movement down acid soil columns was faster when lime and plant residues were combined than when either was applied separately. *European Journal of Soil Science*, vol. 72, pp. 313–325.

Gillman GP and Sumpter EA 1986. Modification to the compulsive exchange method for measuring exchange characteristics of soils. *Australian Journal of Soil Research*, vol. 24, pp. 61–66.

Haynes RJ and Mokolobate MS 2001. Amelioration of Al toxicity and P deficiency in acid soils by additions of organic residues: a critical review of the phenomenon and the mechanisms involved. *Nutrient Cycling in Agroecosystems*, vol. 59, pp. 47–63.

Isbell RF, National Committee on Soil and Terrain 2021. *The Australian Soil Classification*. CSIRO Publishing: Melbourne.

Kirkby CA, Richardson AE, Wade LJ, Batten GD, Blanchard C and Kirkegaard JA 2013. Carbon-nutrient stoichiometry to increase soil carbon sequestration. *Soil Biology and Biochemistry*, vol. 60, pp. 77–86.

Lowrie AJ, Lowrie RJ and Li GD 2018. A multi-core sampler improves accuracy of soil test results. *Proceedings of the National Soils Conference*, Canberra, ACT, Australia, 18–23 November 2018, (eds N Hulugalle, T Biswas, R Greene and P Bacon), pp. 420–421, Soil Science Australia, https://www.soilscienceaustralia.org.au/wp-content/uploads/2019/10/Proceedings-Natl.-Soil-Sci-Conf-Canberra-18-23-Nov-2018-FINAL_reduced-size-1.pdf.

Tang C and Yu Q 1999. Impact of chemical composition of legume residues and initial soil pH on pH change of a soil after residue incorporation. *Plant and Soil*, vol. 215, pp. 29–38.

Acknowledgements

This experiment was part of the 'Innovative approaches to managing subsoil acidity in the southern region' project, DAN00206, 2015–20, with joint investment by NSW DPI and GRDC.

Our thanks extend to the landowner Tony Geddes for his ongoing cooperation during the experiment.

Contact

Dr Guangdi Li

Wagga Wagga Agricultural Institute, Wagga Wagga

guangdi.li@dpi.nsw.gov.au

02 6938 1930