

Lentil response to sowing date and water treatment – Wagga Wagga, Leeton and Condobolin 2020

Mark Richards¹, Dr Aaron Preston¹, Dr Lance Maphosa¹, Karl Moore¹, Scott Clark¹, Nelson West¹, Tony Napier², Daniel Johnston², Reuben Burrough³ and Richard Maccallum³

¹ NSW DPI, Wagga Wagga

² NSW DPI, Leeton

³ NSW DPI, Condobolin

Key findings

- Sowing date and water availability significantly affected grain yield responses.
- The highest yields at Wagga Wagga were associated with the early June sowing date; there was no significant difference in yield between sowing dates at Leeton or Condobolin.
- The highest yields at Wagga Wagga were obtained in the dryland treatment; there was a significant yield penalty associated with irrigation due to increased disease.
- Atypical rainfall, low heat and no frost stress lengthened the growing season, allowing later sowing dates to yield higher (or remove the yield penalty).

Introduction

In central western and southern NSW, abiotic stresses such as heat and moisture stress late in the season and frost damage during the vegetative and reproductive phases limit lentil yield potential. To maximise yield, it is important to optimise sowing date to ensure that critical growth phases coincide with a period of low abiotic stress risk. This paper reports the findings of field experiments conducted at Wagga Wagga and Leeton (both southern NSW), and Condobolin (central western NSW) in 2020, where lentil variety yield responses were evaluated across three sowing dates from late April to early June (Wagga Wagga, Figure 1, and Leeton) and two sowing dates, early May and early June (Condobolin), under dryland conditions, with an additional irrigated treatment at Wagga Wagga. Table 1 summarises site details and Table 2 summarises the varieties and sowing dates tested at each location.

Figure 1 Lentil plots at Wagga Wagga, 21 July 2020.

This research paper is an extract from the publication *Southern NSW Research Results 2021*, available at https://www.dpi.nsw.gov.au/agriculture/broadacre-crops/guides/publications/southern-nsw-research-results

Site	Wagga Wagga	Leeton	Condobolin
Location	Wagga Wagga Agricultural Institute	Leeton Field Station	Condobolin Agricultural Research and Advisory Station
Soil type	Red kandosol	Grey vertosol	Red chromosol
Previous crop	Wheat	Barley	2019 fallow
Rainfall	• Fallow (November–March): 192 mm	• Fallow (November–March): 188 mm	• Fallow (November–March): 275 mm
	 Fallow long-term average (LTA): 198 mm 	 Fallow long-term average (LTA): 155 mm 	 Fallow long-term average (LTA): 192 mm
	• In-crop (April–October): 345 mm	 In-crop (April—October): 260 mm 	 In-crop (April-October): 396 mm
	• In-crop LTA: 330 mm	• In-crop LTA: 262 mm	• In-crop LTA: 240 mm
	An additional 56 mm was applied periodically during the season for the irrigated treatment as follows: • 8.1 mm on 21 September	Approximately 200 mm was applied before sowing in order to start the experiment with a full moisture profile.	
	• 9.9 mm on 14 October		
	• 13.9 mm on 16 November		
	• 14.1 mm on 22 November.		
Soil nitrogen	• 0–10 cm: 48.9 kg/ha	• 0—10 cm: 14.7 kg/ha	• 0–10 cm: 44.2 kg/ha
	• 10–60 cm: 20.2 kg/ha	• 10–60 cm: 112.0 kg/ha	• 10-60 cm: 69.0 kg/ha
	• 60–120 cm: 8.4 kg/ha	• 60–120 cm: 57.1 kg/ha	• 60—110 cm: 120.0 kg/ha
Starter fertiliser	Granulock®Z Soygran 100 kg/ha (nitrogen [N]: 5.5; phosphorus [P]: 15.3; potassium [K]: 0.0; sulfur [S]: 7.5)	Utiliser pulse mix 120.0 kg/ha (nitrogen [N]: 7.48; phosphorus [P]: 17.64; potassium [K]: 6.24; calcium [Ca]: 6.4; zinc [Z]: 0.32; manganese [Mn]: 3.2)	70 kg/ha mono-ammonium phosphate (MAP)
Target plant density	120 plants/m ²	120 plants/m ²	120 plants/m ²
Weed manage	ment		
Fallow management and pre-	 Gladiator[®] CT (450 g/L glyphosate) 2 L/ha + Striker[®] (240 g/L oxyfluorfen) 100 mL/ha on 24 February 	• Roundup Ultra® Max (570 g/L glyphosate) 3.0 L/ha + Hammer® 400 EC (400 g/L carfentrazone-ethyl)	Nil
sowing knockdown	 Gladiator[®] CT (450 g/L glyphosate) 2 L/ha + Triclopyr 600 (600 g/L triclopyr) 80 mL/ha on 11 March 	50 mL/ha on 21 April	
	 Panzer 450 (450 g/L glyphosate) 2 L/ha + Triclopyr 600 (600 g/L triclopyr) 80 mL/ha on 14 May 		
	 Spray.Seed[®] 250 (135 g/L paraquat and 115 g/L diquat) 2 L/ha on 27 April 		
	 Paraquat 360 (360 g/L paraquat) 2 L/ha + Genfarm Genwet 1000 250 mL/ha 		
Pre-emergence (at sowing)	 Treflan™ (480 g/L trifluralin) 1.2 L/ha + Terbyne[®] Xtreme[®] (875 g/L 	• Rifle [®] 440 (440 g/L pendimethalin) 2.0 L/ha + Terbyne [®] Xtreme [®] (875 g/L	• Triflur X (480 g/L trifluralin) 1.2 L/ha on 24 April (pre-sowing)
	terbuthylazine) 900 g/ha	terbuthylazine) 1.2 kg/ha + Avadex® Xtra (500 g/L tri-allate) 1.6 L/ha	 Roundup Ultra Max (570 g/L glyphosate) 1.5 L/ha + Terbyne[®] Xtreme[®] (875 g/kg) 1.2 kg/ha

Table 1	Summary of site conditions and	experiment management at Wagga	a Wagga, Leeton and Condobolin, 2020.
---------	--------------------------------	--------------------------------	---------------------------------------

Site	Wagga Wagga	Leeton	Condobolin
Post- emergence	 Verdict[®] 520 (520 g/L haloxyfop) 75 mL/ha + Platinum[®] XTRA 360 (360 g/L clethodim) 330 mL/ha + Uptake[™] 500 mL/ha on 29 June Verdict[®] 520 (520 g/L haloxyfop) 75 mL/ha + Factor[®] WG (250 g/kg butroxydim) 180 g/ha + Supercharge[®] 1 L/ha on 3 August 	 Rifle[®] 440 (440 g/L pendimethalin) 2.0 L/ha + Terbyne[®] Xtreme[®] (875 g/L terbuthylazine) 1.2 kg/ha +Avadex[®] Xtra (500 g/L tri-allate) 1.6 L/ha 	Nil
Disease management	 Dithane[®] (750 g/kg mancozeb) 2.2 kg/ha on 30 June Aviator[®] Xpro[®] (150 g/L prothioconazole and 75 g/L bixafen) 650 mL/ha on 4 August Veritas[®] (200 g/L tebuconazole and 120 g/L azoxystrobin) 1 L/ha on 15 September Echo[®] 900WDG (900 g/kg chlorothalonil) 1.2 kg/ha on 29 September, 9 October, 22 October, 10 November 	 Aviator[®] Xpro[®] (150 g/L prothioconazole and 75 g/L bixafen) 600 mL/ha on 11 June Dithane[®] (750 g/kg mancozeb) 2.2 kg/ha on 3 July and 23 July Veritas[®] (200 g/L tebuconazole and 120 g/L azoxystrobin) 1.0 L/ha on 3 August Cheers[®] 720 (720 g/L chlorothalonil) 1.8 L/ha on 3 August, 17 August, 4 September, 20 October, 29 October 	 Penncozeb® 750DF (750 g/kg mancozeb) 1 kg/ha + 0.1% Bond on 8 July Aviator® Xpro® (150 g/L prothioconazole and 75 g/L bixafen) 600 mL/ha on 6 August Veritas® (200 g/L tebuconazole and 120 g/L azoxystrobin) 1.0 L/ha on 29 September
Pest management	 Lemat[®] (290 g/L omethoate) 200 mL/ha on 29 May Chlorpyrifos 500EC (500 g/L chlorpyrifos) 300 mL/ha on 30 June Astound[®] (100 g/L alpha-cypermethrin) 200 mL/ha on 17 September Astound[®] (100 g/L alpha-cypermethrin) 200 mL/ha on 15 October Trojan[®] (150 g/L gamma-cyhalothrin) 35 mL/ha on 19 November 	• Decis® options (27.5 g/L deltamethrin) 500 mL/ha on 20 October and 29 October	 Karate Zeon[®] (250 g/L lambda- cyhalothrin) 36 mL/ha + Aphidex[®] WG (500 g/L pirimicarb) 250 g on 14 October
Desiccation	 Gramoxone[®] (250 g/L paraquat) 800mL/ha on 2 December and 8 December 	Nil	Nil

Table 2Summary of the experiment treatments: variety, sowing date, and water treatment at Wagga Wagga, Leeton and Condobolin,2020.

Site	Wagga Wagga — WWAI	Leeton – LFS	Condobolin – CARAS	
Variety	PBA Hallmark XT [®]	PBA Hallmark XT ⁽⁾	PBA Highland XT ⁽)	
	PBA Jumbo2 ^(b)	PBA Jumbo2 ⁽⁾	PBA Hallmark XT ^(b)	
	PBA Bolt	PBA Bolt [®]	PBA Jumbo2 ^(b)	
	PBA Kelpie XT $^{ au}$	PBA Kelpie XT©	PBA Blitz ⁽⁾	
			PBA Ace ^(b)	
			PBA Greenfield	
			PBA Bolt ^(b)	
			PBA Kelpie XT	
Sowing date (SD)	SD1: 24 April	SD1: 24 April	SD1: 8 May	
	SD2: 15 May	SD2: 15 May	SD2: 5 June	
	SD3: 5 June	SD3: 5 June		
Water treatment	Dryland and irrigated	Dryland only	Dryland only	

Note: PBA Kelpie XT^(b) previously known as CIPAL1721.

Results Seasonal conditions

In 2020, southern and central western NSW growing season rainfall was close to the long-term average. Rainfall, though appearing average across the growing season, was atypical for Wagga Wagga, Leeton and Condobolin with above average rainfall during the pre-sowing period (April) and again in spring (October), and less than average rainfall between these periods. This rain pattern prevented significant decline in soil moisture throughout much of the growing season.

Wagga Wagga

Grain yield, biomass and plant phenology

Sowing date, variety and water treatment all influenced grain yield and harvest index at Wagga Wagga (Table 3). Generally, earlier sowing reduced grain yield and harvest index as did irrigation.

Lentils sown on SD3 (5 June) had the highest grain yield in the experiment, although this is uncharacteristic for this environment, which generally favours mid May sowing (Richards et al. 2020). PBA Kelpie XT^Φ was the highest yielding variety (2.84 t/ha) across all sowing dates, with no significant difference between PBA Bolt^Φ, PBA Hallmark XT^Φ, PBA Jumbo2^Φ.

Maximum biomass (9.06 t/ha) occurred with lentil sown on SD2 (15 May), with SD1 and SD3 producing significantly less biomass (7.57 and 7.89 t/ha respectively). No differences in the amount of biomass produced was detected between varieties and adding the water treatment only served to reduce the biomass produced across all sowing dates. Irrigation increased the severity of disease (botrytis grey mould), which ultimately reduced the biomass and yield produced. Additionally, early sowing facilitated virus infection and spread by aphids.

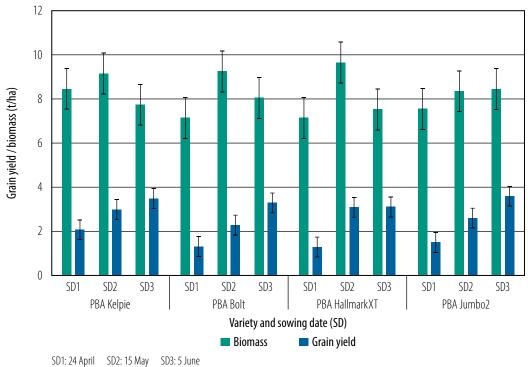

	Harvest index cut		Header yield	Plant phenology				
-	Biomass (t/ha)	Grain yield (t/ha)	Harvest index (HI)	Grain yield (t/ha)	Start of flowering	Plant height (mm)	Bottom pod height (mm)	Top pod height (mm)
Sowing date								
SD 1: 24 April	7.57	1.51	0.19	1.02	3 Sept	640.00	27.90	64.31
SD 2: 15 May	9.06	2.72	0.30	1.94	16 Sept	522.65	25.15	53.88
SD 3: 5 June	7.89	3.34	0.42	2.91	21 Sept	464.03	20.62	47.21
P value	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.004	<0.001
l.s.d. (P<0.05)	0.430	0.220	0.020	0.150	2.740	44.194	4.013	3.965
Variety								
PBA Kelpie XT	8.42	2.84	0.34	2.02	9 Sept	n.c.	n.c.	n.c.
PBA Bolt	8.13	2.26	0.27	1.63	12 Sept	566.25	22.40	55.04
PBA Hallmark XT	8.07	2.47	0.30	1.93	16 Sept	n.c.	n.c.	n.c.
PBA Jumbo2	8.08	2.52	0.30	2.25	16 Sept	518.20	26.71	55.23
P value	0.628	0.002	<0.001	<0.001	<0.001	0.015	0.023	0.978
l.s.d. (P<0.05)	n.s.	0.263	0.024	0.169	3.167	35.42	3.24	n.s.
Water treatment								
Dryland	8.63	2.87	0.33	2.22	14 Sept	555.65	25.33	55.39
Irrigated	7.72	2.17	0.28	1.70	13 Sept	528.80	23.78	54.88
P value	<0.001	<0.001	<0.001	<0.001	0.292	0.12	0.32	0.79
l.s.d. (P<0.05)	0.35	0.18	0.02	0.12	n.s.	n.s.	n.s.	n.s.

Table 3 Summary of means of each treatment for yield from biomass cuts taken at harvest, header yield, start of flowering, plant height, top and bottom pod height at Wagga Wagga, 2020.

l.s.d. = least significant difference; n.s. = not significant; n.c. = not collected.

Variety \times sowing date interactions were observed for biomass and grain yield with delayed sowing increasing yield for all varieties (Figure 2). As with the sowing date mean trend, biomass generally peaked for all varieties at SD2.

Delayed sowing also delayed the start of flowering (Table 3), with varieties performing as expected; PBA Kelpie XT^Φ and PBA Bolt^Φ flowered earlier than PBA Hallmark XT^Φ and PBA Jumbo2^Φ. Given bottom pod height is an important factor affecting harvest efficiency, SD 3 (5 June) had a significantly lower bottom pod height of 20.62 cm compared to SD1 and SD2 (27.9 and 25.15 respectively). Only PBA Bolt^Φ and PBA Jumbo2^Φ were measured at maturity for height, and although PBA Bolt^Φ was significantly taller than PBA Jumbo2^Φ, PBA Jumbo2^Φ had a higher bottom pod height (22.4 mm and 26.7 mm respectively).

I Vertical bars represent l.s.d. (P = 0.05).

Figure 2 Grain yield and biomass (t/ha) from harvest cuts of four lentil varieties sown on three dates at Wagga Wagga, 2020.

Leeton

Grain yield and biomass

At Leeton, greater biomass was associated with earlier sowing (SD1 and SD2) with no differences between varieties (Table 4). Sowing date did not affect grain yield however, although varietal differences were detected with PBA Hallmark XT^Φ yielding lower than all other varieties. No interaction was found between sowing date × variety for biomass, however, interactions were evident for yield (Figure 3). SD1 and PBA Jumbo2^Φ was the highest yielding combination (4.42 t/ha), with SD3 and PBA Hallmark XT^Φ the lowest (3.04 t/ha).

_		Header yield		
	Biomass (t/ha)	Grain yield (t/ha)	Harvest index (HI)	Grain yield (t/ha)
Sowing date				
SD 1: 24 April	9.59	3.82	0.40	2.80
SD 2: 15 May	9.14	3.50	0.39	2.73
SD 3: 5 June	8.79	3.73	0.43	3.10
P value	<0.001	n.s.	<0.001	0.002
l.s.d. (P<0.05)	0.645		0.02	0.204
Variety				
PBA Bolt	9.53	3.70	0.39	3.10
PBA Hallmark XT	9.09	3.34	0.37	2.84
PBA Kelpie XT	8.73	3.73	0.43	2.67
PBA Jumbo2	9.33	3.96	0.43	2.90
P value	n.s.	0.009	0.002	0.019
l.s.d. (P<0.05)		0.47	0.03	0.47

Table 4 Summary of means of each treatment for yield from biomass cuts taken at harvest and header yield at Leeton, 2020.

l.s.d. = least significant difference; n.s. = not significant.

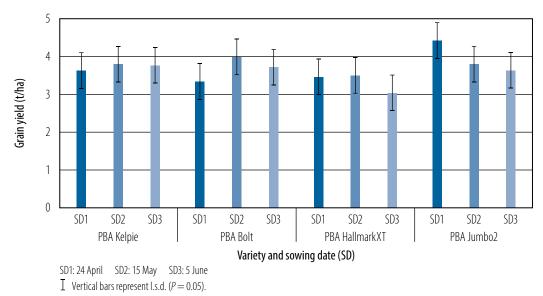


Figure 3 Grain yield from harvest cuts of four lentil varieties sown on three dates at Leeton, 2020.

Condobolin

Grain yield and biomass

At Condobolin, greater biomass was associated with the earlier sowing date (SD1) with significant differences between the varieties, mostly due to low biomass in PBA Blitz^(b) (Table 5). However, sowing date did not affect grain yield, nor were any varietal differences detected. No interaction was found between sowing date × variety for biomass or yield.

	Harvest index cut			Header yield	
	Biomass (t/ha)	Grain yield (t/ha)	Harvest index (HI)	Grain yield (t/ha)	
Sowing date					
SD 1: 8 May	3.03	1.36	0.45	0.54	
SD 2: 5 June	2.43	1.22	0.50	0.57	
P value	<0.001	n.s.	<0.001	n.s.	
l.s.d. (P<0.05)	0.034		0.029		
Variety					
PBA Kelpie XT	2.89	1.48	0.51	0.61	
PBA Bolt	2.60	1.19	0.47	0.60	
PBA Hallmark XT	3.02	1.50	0.50	0.68	
PBA Jumbo2	2.89	1.35	0.47	0.63	
PBA Blitz	2.10	1.08	0.51	0.28	
PBA Greenfield	2.42	1.10	0.44	0.35	
PBA Highland XT	2.90	1.24	0.46	0.71	
PBA Ace	3.05	1.41	0.46	0.61	
P value	0.027	n.s.	n.s.	<0.001	
l.s.d. (P<0.05)	0.579			0.141	

Table 5 Performance of four lentil varieties across two sowing dates at Condobolin, 2020.

l.s.d. = least significant difference; n.s. = not significant.

Summary In 2020, seasonal conditions significantly influenced grain yield responses to sowing date at Wagga Wagga, Leeton and Condobolin. Irrigation at Wagga Wagga in a wet year (2020) with above average rainfall increased viral disease incidence and decreased overall plant health, ultimately decreasing grain yield. The decrease was more pronounced for the early sowing date (SD1). Rainfall in 2020 was sufficient to maximise yield without additional irrigation water and associated complications in the form of increased disease severity.

ReferenceRichards M, Preston A, Maphosa L, Maheswaran R, Moore K, Clark S, Johnston D, Burrough R and
Napier T 2020. Lentil phenology and grain yield response to sowing date – Wagga Wagga and Leeton
2019; D Slinger, T Moore and C Martin (eds), Southern NSW research results 2020, pp. 51–58, NSW
Department of Primary Industries.

Acknowledgements This experiment was part of the 'Matching adapted pulse genotypes with soil and climate to maximise yield and profit, with manageable risk in Australian cropping systems' project, BLG118, 2020–22, a joint investment by GRDC and NSW DPI under the Grains Agronomy and Pathology Partnership (GAPP).

Thanks to Daryl Reardon, NSW DPI Condobolin for technical assistance.

Contact Mark Richards Wagga Wagga Agricultural Institute, Wagga Wagga mark.richards@dpi.nsw.gov.au 0428 630 429