Disclaimer:

This document is based on the results from an individual trial and may contain experimental use patterns that are currently off-label. This document does not provide any interpretation and should not be taken as an endorsement of any unregistered use pattern. Professional advice should be sought for specific recommendations to ensure access to the most up to date information and knowledge. Any product referred to in this document must be used strictly as directed, and in accordance with all label or permit instructions. Always consult the label prior to use.

Impact of Spray Drift Reduction Technologies on Grass Weed Efficacy							
Trial ID:	DH2101	Location:	Narrabri	Trial Year:	2022		
		Investigator:	Dean Hancock				

The control of seedling grass weeds in fallows with heavy cereal stubble has frequently been a challenge to the use of drift reduction technologies. This project was designed to evaluate the impact of changes in application volume and speed on the efficacy obtained with drift reduction technologies compared to a standard spray application approach. In addition, it evaluated the impact on grass efficacy of adjuvants with drift reduction properties compared to a standard crop oil.

Objective:	To evaluate the impact of spray drift reduction strategies on grass weed efficacy						
Situation:	Fallow						
Weed:	Volunteer barley in wheat stubble ~30 cm tall						
Application Date:			03/03/2022				
Weed Stage at Application:			4 leaf, ~10cm high				
Weed Population at Application:			61/m ²				
Spray Configurations:	Α	В	С	D	E		
Nozzles:	AIXR11002	TTI110015	TTI11002	TTI11002	TTI11003		
Pressure:			400 kPa				
Application Speed:	21.6 km/hr	16.2 km/hr	21.6 km/hr	10.8 km/hr	16.2 km/hr		
Volume:	50 L/ha	50 L/ha	50 L/ha	100 L/ha	100 L/ha		
Droplet Size:	Medium/Coarse	Extra Coarse/	Ultra Coarse	Ultra Coarse	Ultra Coarse		
		Ultra Coarse					
Key Evaluation:	Standard or	Impact of	Impact of	Impact of	Impact of		
	Benchmark	increased	increased	increased	droplet size		
		droplet size	droplet size	droplet size	with increased		
		with slower	alone	with increased	volume		
		speed	compared to A	volume	compared to B		
		compared to A		compared to C	-		
		and C		-			
Trial Design:	Factorial with 5 spray configurations x 3 surfactants (3 replicates)						
Plot Size:	4m x 20m						
Keywords:	Volunteer barley, knockdown, fallow						
Irial designed and analysed as a factorial							

	In Simple Terms
Table of A Means:	Mean of 'Adjuvant' performance with ALL 'Spray Configuration' treatments
Table of B Means:	Mean of 'Spray Configuration' performance with ALL 'Adjuvant' treatments
Table of A x B Means:	Mean of 'Adjuvant' performance with EACH 'Spray Configuration' treatment

How to interpret?

Impact of Spray Drift Reduction Technologies on Grass Weed Efficacy

Trial ID: DH2101

Location:

Narrabri

Trial Year: 2022

NB: Interaction table excluded as no significant differences between adjuvants and spray configuration and to assist in simplifying results

AIXR11002 was the benchmark treatment providing droplets on the border of medium and coarse TTI110015 provide the same application volume but ultra

_								
Pest	t Name						Volunte	er Barley
Asse	essment Date						29/03	3/2022
Asse	essment Type						COUNT	CONTROL
Asse	essment Unit						/m²	%
Asse	essment Area						4 x 0.25	m²/ plot
Pest	t Stage Majori	ty					~ 3 t	illers
Trea	atment-Evalua	tion Interval					26	DAA
	Action Codes	5						45
Trt		Trootmont			Product	Appln.		
No.		rreatment			Rate	Code		
ТАВ	LE OF A MEAN	IS (Adjuvant)						
1	Verdict 520				50ml/ha		6.1t-	90
		Uptake oil			0.5% v/v			
2		Verdict 520			50ml/ha		5.5t-	91
		Collide 700			0.5% v/v			
3		Verdict 520			50ml/ha		5.7t-	91
		On Coarse			0.25% v/v			
ТАВ	LE OF B MEAN	S (Spray Configuration)						
	Nozzle	Application Speed	Volume	D	roplet Size			
1	AIXR11002	21.6 km/h	50 L/ha	Me	dium/coarse	А	6.3t-	90
2	TTI110015	16.2 km/h	50 L/ha	Extra co	arse/ultra coarse	В	8.6t-	86
3	TTI11002	21.6 km/h	50 L/ha	50 L/ha Ultra		С	6.7t-	89
4	TTI11002	10.8 km/h	100 L/ha	100 L/ha Ultra coarse		D	4.0t-	93
5	TTI11003	16.2 km/h	100 L/ha	U	ltra coarse	E	3.9t-	94

Means followed by same letter do not significantly differ (P=.05, LSD) t=Mean descriptions are reported in de-transformed units

FACTORIAL/POOLED ERROR AOV Volunteer Barley 29/03/2022 COUNT /m ² 26 DAA AS							
Source	Source DF Sum of Squares Mean Square F Prob.(F) LSD (.05)						
Total	44	27.701258					
R	2	0.005035	0.002518	0.004	0.9964		
Α	2	0.112258	0.056129	0.081	0.9221	0.6	
В	4	5.660688	1.415172	2.051	0.1144	0.8	
AB	8	2.599221	0.324903	0.471	0.8662	1.4	
ERROR	28	19.324056	0.690145				

ARM Action Codes

AS = Automatic square root transformation of X+0.5

DAA = Days after Application A

Impact of Spray Drift Reduction Technologies on Grass Weed Efficacy

Trial ID:	DH2101	Location:	Narrabri	Trial Year:	2022

Off target herbicide movement is a major industry issue with the interaction of droplet size and weed efficacy often an area of grower uncertainty. Targets of most concern are generally seedling grass control in high stubble load fallow situations.

This protocol was developed to evaluate the impact of spray drift reduction technologies on grass weed efficacy. Previous NGA work has targeted key summer grass weeds, however the challenge is finding sites with 1) sufficient weed pressure to confidently compare treatments at 2) consistent growth stages.

This trial was conducted in a fallow where barley seed was manually spread to provide a high density of weeds. The trial was conducted in wheat stubble from the 2021 harvest, at a harvest height of ~30cm. A 'sub-lethal' rate of Verdict (haloxyfop) was used to evaluate treatments. Group 1 herbicides such as Verdict have limited systemic activity and require thorough coverage of the weed growing point to provide effective control.

Key objectives of this protocol were:

- 1. To evaluate the impact on efficacy from using ultra coarse v coarse droplets
- 2. To assess the impact of changing application speed and volume when using ultra coarse droplets
- 3. To assess the impact on efficacy of drift reduction adjuvant packages
- 4. To identify drift reduction strategies that maintain efficacy to levels achieved with coarse droplets.

Spray Configurations

(AIXR nozzles were used as the benchmark treatment providing a droplet spectrum on the borderline of medium and coarse. TTI nozzles provided droplet sizes on the borderline of extra coarse/ ultra coarse and ultra coarse)

- A. AIXR11002 50 L/ha at 21.6 km/h Benchmark treatment
- B. TTI110015 50 L/ha at 16.2 km/h Impact of increased droplet size and reduced application speed compared to A and C
- C. TTI11002 50 L/ha at 21.6 km/h Impact of increased droplet size alone compared to A
- D. TTI11002 100 L/ha at 10.8 km/h Impact of increased volume and reduced application speed compared to C
- E. TTI11003 100 L/ha at 16.2 km/h Impact of increased volume alone compared to B

Conclusions:

Verdict at 50 mL/ha was applied in all treatments to seedling volunteer barley (~2 to 4 leaf stage and ~ 61 seedlings/m²) growing in 2021 harvested wheat stubble (~ 30 cm tall). A combination of five different spray configurations (nozzle, volume and speed) were used with all applied at a standard pressure of 400 kPa. Different nozzle sizes allowed a comparison of similar droplet sizes at different volumes or application speeds. All spray configurations were tested with three different adjuvants.

A visual assessment at 7 days after application (7 DAA) did not show any obvious biomass reduction effects.

Rainfall events did not allow another assessment until 26 DAA when surviving barley counts were taken. All treatments provided ~ 90% control with no significant interaction between adjuvant choice and spray configuration ie the effect of the nozzle setup was the same regardless of the adjuvant.

Factorial analysis showed no significant difference between the adjuvants with no indication that Collide 700 or On Coarse reduced efficacy compared to Uptake oil.

There was no significant effect of spray configuration on efficacy with no indication that the reduced travel speed alone with TTI110015 provided any benefit compared to the AIXR. If there was any subtle trend apparent, the treatments with 100 L/ha water volume recorded the lowest mean survival counts.

In this situation, the level of seedling volunteer barley control was marginal, however there was no significant impact on control using extra coarse droplets (provided by TTI nozzles) compared to medium/coarse droplets (AIXR nozzle). There was no indication that reducing application speed alone provided any benefit although the increased water volumes resulted in the lowest survival numbers. There was no indication of any reduction in efficacy with the drift reduction adjuvants. It is not possible to identify improved drift reduction strategies from this individual trial but the results are 'supportive' of using increased application volumes when using nozzles producing larger droplet sizes.

Impact of Spray Drift Reduction Technologies on Grass Weed Efficacy

Trial ID: DH2101

Location:

Narrabri

Trial Year:

2022

	Applicatio	on Descriptio	n					
A B C D								
Application Date: 3/03/2022								
Application Start Time:		0	9:00 AM					
Application Stop Time:		1	2:30 PM					
Application Timing:	EARLY POST-EM							
Application Placement:	FOLIAR							
Air Temperature, Unit:	22.6 C							
% Relative Humidity:	69							
Wind Velocity, Unit:	/ind Velocity, Unit: 9.2 km/h							
Wind Direction:	SSE							
Dew Presence (Y/N):	No							
Next Moisture Occurred On:		7	/03/2022					

Application Equipment							
	Α	В	С	D	E		
Application Equipment:	Polaris						
Equipment Type:			BOOM				
Operation Pressure, Unit:	400 kPa						
Nozzle Spacing, Unit:	50 cm						
Boom Length, Unit:	4 m						
Boom Height, Unit:	50 cm						
Nozzle Type:	AIXR TTI						
Nozzle Size:	11002 110015 11002 11002 11003						
Ground Speed, Unit:	21.6 km/h 16.2 km/h 21.6 km/h 10.8 km/h 16.2 km/h						
Spray Volume, Unit:	50 L/ha 100 L/ha						

Rainfall:

Closest Weather Station:	Millfield
Distance, Unit:	1.5km

Date	Amount	Unit	Additional Comments
3/03/2022	-		Application
7/03/2022	15	mm	
9/03/2022	12	mm	
27/03/2022	30	mm	
28/03/2022	10	mm	
29/03/2022	-		Surviving weed count