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Abstract: Remote sensing from optical radiometers in space offers a nondestructive approach to esti-
mating above ground biomass (AGB) with high spatial and temporal resolution, but the application
is challenged by cloud cover and differences in soil background and crop phenology. We present
a framework based on Sentinel-2 imagery for relating the adjusted summed NDVI measurements
to the AGB. The resulting R2 values for the measured and estimated AGB ranged from 0.79 to 0.98
for individual paddocks, and the R2 from a pooled dataset (multiple crops, years, and locations)
was 0.86. Application of the pooled dataset model to a separate validation dataset resulted in an
R2 of 0.88; however, there was a bias that resulted in the underestimation of the measured biomass.
Analysis of the impacts of the gaps in the time series showed a decrease of 0.43% per gap day for the
summed NDVI values. To address the impacts of clouds, we demonstrate the use of active optical and
additional satellite imagery to fill the gaps due to clouds in the Sentinel-2 imagery. The framework
presented results of the spatial daily estimates of the AGB and crop growth rates.

Keywords: NDVI time series; crop biomass; crop growth rate; Sentinel-2

1. Introduction

Above ground biomass (AGB) is an important crop parameter, providing an indicator
of yield, crop growth, and net primary productivity, while also supporting crop manage-
ment decisions. Whereas traditional approaches to AGB measurement involve destructive
sampling, remote sensing technologies provide a nondestructive approach to estimate the
AGB at a range of spatial scales, providing a flexible means of measuring and monitoring
crop growth and condition. With rapid advancements in remote sensing technology, it is
now possible to have both high spatial resolution and high temporal frequency imagery.
This makes paddock-specific analyses of temporal and spatial crop production dynamics,
including AGB, possible, in addition to broader regional assessments.

Estimation of the AGB from satellite time series dates back to the early 1980s (e.g., [1,2]).
Since then, the body of work utilizing remote sensing in crop studies has developed, encom-
passing approaches such as the development of empirical relationships [3–5], integration
with crop and biophysical models [6–8], and the use of crop phenology metrics [9,10].
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There is great diversity in the remote sensing platforms and sensors used to estimate
crop AGB including multispectral [4,10], hyperspectral [3], LiDAR [11], and radar tech-
nology [12,13]. Vegetation indices such as the Normalised Vegetation Difference Index
(NDVI) [14] are used extensively to derive the AGB from remotely sensed data.

The time series of vegetation indices, such as the NDVI, frequently provide the basis
for calculating crop phenology metrics such as the length of the growing season and the
start and the end of the growing season. Software packages such as TIMESAT [15] and
CropPhenology [16] have been developed to aid the calculation of these metrics. Summed
NDVI, also referred to as time-integrated NDVI, is a phenology metric demonstrated to
predict AGB or net primary production. It represents the magnitude of vegetative growth
within a season. At a broad scale, the summed NDVI has been used to represent regional
productivity in animal and crop systems [17,18], as well as grassland systems [19], over
multiple years. Araya et al. [9] used summed NDVI to examine the crop growth variability
across paddocks using MODIS imagery. They found the summed NDVI to be sensitive to
seasonal variability.

Several studies have reported strong correlations between the summed NDVI and
the crop AGB or yield. The use of summed NDVI reduces issues associated with relating
the AGB directly to the NDVI values due to the timing of AGB accumulation within crops
and peak NDVI values [20]. Mirasi et al. [21] and Nakayama [18] found strong correlations
between the summed NDVI and yield for a number of crops including wheat and rice.
Perry et al. [10] found strong correlations between the wheat AGB and summed NDVI
derived from MODIS imagery across a number of paddocks. At a smaller spatial scale
(sub-paddock experimental plots), Tefera et al. [22] demonstrated a correlation between
the summed NDVI and field pea biomass. Calera et al. [20] reported strong relationships
between the AGB (irrigated barley and corn crops) and summed NDVI at multiple growth
stages throughout the year. Mirasi et al. [21] also examined the variation in correlation
through time, with a stronger correlation between the summed NDVI and crop yield at
heading (half emerged) compared with the tillering and ripening growth stages. A similar
increase in variance after anthesis was noted by Perry et al. [10].

Whilst these studies demonstrate the successful use of the summed NDVI for AGB
estimation, there are multiple factors, which impact this, such as differences in sensors,
variation in soil background reflectance, and spatial scale. Image preprocessing, including
the derivation of a smoothed NDVI time series, and specific approaches to deriving a
summed NDVI value also vary between studies.

One specific challenge for AGB estimation from satellites is gaps in the NDVI time
series due to cloud coverage. There are a number of gap-filling approaches including
Harmonic Analysis of Time Series (HANTS) and various curve fitting algorithms. The most
appropriate technique is often application specific [23–25].

In this paper, we focus on the use of the public domain Sentinel-2 (S-2) imagery to esti-
mate crop AGB within paddocks across multiple regions in Australia with varying climatic
conditions and soil types. We use this diverse dataset to examine not only the estimation of
the crop AGB from imagery but to investigate issues impacting the broader application
of this approach, such as the transferability of the S-2 AGB relationships between crop
types, regions, and paddocks, and the impact of image acquisition gaps on the underlying
time series derivation and subsequent measurements of AGB. We examine approaches to
normalize relationships across different paddocks and the integration of multiple sensors
to overcome the impact of clouds on the NDVI time series. We demonstrate the impact
of gaps in the image time series data and the timing of those gaps on the uncertainty in
the resulting AGB estimates. The analyses are completed using real, as opposed to syn-
thetic, data, presenting a robust analysis of the impacts for practical applications of these
approaches. The framework we present to overcome these issues facilitates the ongoing
development of robust approaches to AGB estimation and crop production monitoring
from satellites.
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2. Materials and Methods

In this section, we briefly describe the datasets used. The determination of the AGB
from the NDVI time series, including the processing of the time series, is discussed in
Section 3 in greater detail. The datasets evaluated consist of paired coincident measure-
ments of AGB and cumulative NDVI from the time series from satellite imagery.

2.1. AGB Ground-Truth Datasets

The AGB data were acquired over field sites representing rain fed broad acre cereal
cropping from southern and western Australia. The production areas are described as a
Mediterranean climate, with an annual rainfall from <300 mm to >500 mm. The major soils
are deep coarse-textured sands and sandy loams, duplex soils with coarse-textured sands
over clay, and fine-textured red–brown earths of low hydraulic conductivity [26]. The crops
are grown during the cooler wetter winter and mature during the spring months.

Two separate AGB datasets were used for the analysis (Table 1, Figure 1). A training
dataset (‘Training’) was compiled with data pooled from 23 paddocks in South Australia
and Victoria, across four growing seasons (2018–2021), multiple growth stages, and several
crops representing grain farming systems. These data were divided into calibration and
validation data as described in the Results. A separate validation dataset (‘Validation’),
consisting of 13 paddocks, across multiple growth stages for several crops was acquired in
Victoria in 2017 and 2018. The Training dataset was used to develop models of biomass
estimates for individual paddocks and an overall model using all locations. The Validation
dataset was used to assess the results of the overall model on completely separate data.
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Table 1. Crop biomass datasets.

Dataset Year Location State Crop N

Training

2018 Woorak Victoria Wheat 162
2018 Tarlee Victoria Wheat 42
2019 Woorak Victoria Barley 243
2019 Wharminda South Australia Wheat 32
2019 Booleroo Centre South Australia Barley 24
2019 Cummins South Australia Wheat 20
2019 Nurcoung Victoria Canola 120
2019 Nurrabiel Victoria Wheat 120
2019 Blyth South Australia Wheat 20
2019 Loxton South Australia Wheat 24
2019 Tumby Bay South Australia Barley 18
2019 Tarlee South Australia Wheat 42
2019 Urania South Australia Wheat 30
2019 Wallup Victoria Wheat 120
2019 Wickliffe Victoria Wheat 160
2020 Woorak Victoria Wheat 158
2020 Nurcoung Victoria Wheat 90
2020 Tarlee South Australia Barley 42
2020 Wickliffe Victoria Canola 120
2021 Nurcoung Victoria Faba beans 114
2021 Nurrabiel Victoria Canola 114
2021 Wallup Victoria Wheat 120
2021 Wickliffe Victoria Wheat 156
All 2091

Validation

2017 Maroona Victoria Canola 50
2017 Newlyn Victoria Triticale 60
2017 Seaspray Victoria Wheat 60
2017 Winnindoo Victoria Wheat 60
2018 Devenish Victoria Chickpea 40
2018 Gatum Victoria Wheat 40
2018 Lilliput Victoria Oats 30
2018 Maroona Victoria Wheat 40
2018 Miepoll Victoria Wheat 40
2018 Mininera Victoria Canola 30
2018 Seaspray Victoria Wheat 40
2018 Werneth Victoria Beans 30
2018 Winnindoo Victoria Canola 30
All 550

Georeferenced biomass cuts were used to determine the AGB and used as ground
truth. The crop biomass data were acquired by the researchers and their collaborators as
part of agronomic research using standard protocols. For the Training dataset, standard
methods using dried and weighed sample biomass cuts (e.g., 4 rows by 1 m length) were
used to estimate the AGB. Biomass cuts were taken for each paddock at least once during
the season and up to eight times, with samples taken at 9–60 sites across the paddock. The
biomass cuts acquired for the Validation dataset were taken using a transect approach, with
three 0.5 m cuts along one row along a 10 m transect representing one sample location.

2.2. Satellite Imagery Used

The primary imagery data source for this work was the public domain S-2 Level 2A
image datasets [27]. Daily Planet imagery [28] was acquired for specific dates to supplement
the S-2 time series. For both of the data sources, the surface reflectance products were
used. NDVI was computed from the red and near-infrared bands of the reflectance imagery.
Preprocessing was performed to detect and remove imagery impacted by clouds. This was
completed in two ways: by visual inspection and using the cloud mask metadata. For the
latter, the S-2 Scene Classification Layer (SCL) classes for vegetation and soil [29] were used
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to select cloud-free pixels. Likewise, the Planet Usable Data Map 2 (UDM2; [30]) metadata
were used to select cloud-free pixels. A threshold (e.g., >98% cloud free pixels within the
paddock area) was used to determine if a given image was included in the datasets.

2.3. Ground-Based NDVI Measurements

Ground-based active optical sensing (Holland Scientific Crop Circle ACS-430; Lincoln,
NE, USA) was used to create paddock-wide maps of NDVI for a small subset of the
Training dataset. The sensor was deployed using all-terrain vehicles, with the sensor head
positioned between 0.5 m and 1.0 m above the crop. Transects were driven throughout the
paddocks, and the individual points were interpolated to spatial datasets with 5 m grid
cells. The interpolation was performed using block kriging with 30 m block sizes, and the
interpolated cells were aligned to the S-2 pixels’ footprints. These data were used to help
backfill gaps in the S-2 NDVI time series, as is detailed in Section 3.

2.4. Determining the Small Integral of the NDVI Time Series

S-2 was acquired through the year for each site, and additional NDVI data were added
as required from the Planet imagery and ground-based NDVI. Note that the determination
of the small integral (sNDVI) is implemented per pixel; that is, each pixel represents a
complete and independent time series. The following steps assume that the time series
are cloud free, and that the gaps are small (e.g., 14 days or fewer) or have been filled with
auxiliary data (e.g., Planet imagery or ground-based NDVI). The key parameters described
are also shown in Figure 2. Note that the values selected for the key parameters were
determined through experience as the technique was developed.
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Step 1: Interpolate the time series

This step involved determining the pre- and post-cropping season NDVI values and
interpolating the time series to daily time steps. First, the baseline NDVI was defined as:

NDVIbase = min(NDVI > 0) (1)

The NDVI for day of year (DOY) one through d was set to NDVIbase to eliminate the
effects of summer crops and weeds on the interpolation. For this paper, d equal to 137
was used. Next the time series was fitted using the LOESS function, interpolating the time
series to a daily time step. Note that the LOESS function uses a parameter (SPAN), which
defines the interpolation window. For this paper, we used a SPAN value of 0.25.

Step 2: Determine the start, end, and mid-point of the season
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In this step, the crop phenological stages were determined based on the NDVI time
series. The greenness threshold, NDVIgt, was determined as:

NDVIgt = a(NDVImax − NDVIbase) + NDVIbase. (2)

This parameter was used to determine the beginning of the crop growth. For this paper,
the parameter a was set to 0.10, based on the results from previous datasets (unpublished)
used in the development of the technique. The start, end, and mid-point of the season were
then determined based on the NDVIgt:

DOYstart = first DOY where NDVI > NDVIgt (3)

DOYend = last DOY where NDVI > NDVIgt (4)

DOYmidpt = INT(0.5(DOYstart + DOYend) + DOYstart). (5)

Step 3: Calculate the small integral (summed NDVI, sNDVI)

The crop greenup date, DOYgu, was determined from the mid-season date:

DOYgu = DOYmidpt − n days. (6)

The parameter n was set to 100 in this paper and was based on the earliest expected or
observed emergence of the crop. The small integral was based on the DOYgu, as the NDVI
values prior to DOYgu were not included in the summation. The summation was also
adjusted for the differences in pre- and post-season NDVI values across sites by subtracting
the value of NDVIbase. This results in a small integral as indicated by the shaded area
under the curve shown in Figure 2. The integral (sNDVI) was determined by summing the
adjusted interpolated time series using daily time steps starting at DOYgu and ending at
the desired DOY (e.g., a date corresponding to plant biomass sampling).

sNDVI =
end date

∑
DOY=DOYgu

(NDVIDOY − NDVIbase) (7)

For the combined datasets utilized in this paper, the summation sNDVI was com-
puted on a pixel basis for each crop biomass measurement date. Each georeferenced AGB
measurement was paired with the corresponding sNDVI for that spatial location and
measurement date.

2.5. Software Used

The S-2 level 2A surface reflectance imagery was accessed and processed to create
NDVI time series using Google Earth Engine [31]. The R statistical software [32] was used
extensively in this work, for both the image processing (computing the small integral or
summed NDVI) and the statistical analysis. Selected data analysis and visualization was
performed using QGIS [33]. The QGIS plug in Precision Agriculture Tools ([34]) was used
to process the active optical data. Some of the S-2 imagery was also processed using ENVI
version 5.5.2 and IDL version 8.7.2 (Harris Geospatial Solutions, Inc).

3. Results

In this section, we present the results evaluating the use of the NDVI time series to
estimate the AGB. The estimated values of the AGB were compared with the measurements
(ground truth) after fitting for individual paddocks and pooled across sites and years.
The impact of gaps in the time series was also evaluated, and we describe the use of the
supplemental satellite and ground-based data.
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3.1. Relating Biomass to the Small Integral

The datasets were compiled by pairing the AGB measurements (from biomass cuts) to
the small integral of the NDVI time series (sNDVI) value for the same date, as described in
the Section 2 (Figure 2). Regressions were performed on the Training dataset for individual
paddocks and the pooled data. Eighty percent (selected randomly) of the entire dataset was
used to generate the models of AGB as a function of sNDVI. Figure 3a shows the resulting
relationship between the AGB (kg ha−1) and the sNDVI for 80% of the Training dataset,
used as calibration. The same data, with log10 transformation, are shown in Figure 3b. The
random error was more consistent across the range of sNDVI and AGB values using the
log10 transformation (Figure 3b), while the errors increased with the magnitude of sNDVI
and AGB (Figure 3a). To facilitate the error analysis, the datasets were transformed using
log10 prior to fitting.
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The remaining 20% of the Training dataset was used to assess the fit between the
measured AGB and the AGB estimated from the sNDVI. The results are shown in Table 2.
Note that some paddocks included in the total were not reported individually, as the
number of samples was not sufficient. Figure 4 shows the measured AGB graphed versus
the estimated values for the 20% validation data in log10 space (Figure 4a) and transformed
back to the original units (Figure 4b).
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Figure 4. Validation data representing 20% (N = 416) of the Training dataset. Both the biomass and
sNDVI data were transformed using log10 prior to fitting. (a) Measured versus estimated AGB in
log10 transformation. (b) Measured versus estimated AGB transformed back from log10.
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A validation of the overall regression model (last row of Table 2) was performed using
the Validation dataset (Table 1), a separate dataset than used for the results in Table 2.
The model parameters were applied to the sNDVI values of the Validation dataset to
generate the estimated AGB values. The results of the measured and estimated AGB for
the Validation dataset are shown in Figure 5.
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Figure 5. Results from a validation dataset (N = 550), not utilised for the training results shown in
Table 2. (a) Measured versus estimated AGB in log10 transformation. The solid line indicates the
fitted relationship, and the small dashed line indicates the 1:1 relationship between the modelled and
measured AGB. (b) The same results transformed back to the original space. The solid and dashed
lines indicate the fitted and 1:1 relationships, respectively. The symbols indicate the crop type.
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Table 2. Calibration results for the estimated AGB on the sNDVI. The full Training dataset was split
into calibration (80%) and validation (20%).

Calibration, Log10(DM)~Log10(sNDVI) Validation Log10(DM)~Log10(DMest.)

Year Paddock Crop N Slope Int. R2 SE N Slope Int. R2 SE

2018 Woorak Wheat 130 1.39 1.26 0.93 0.10 32 0.90 0.36 0.89 0.11
2019 Woorak Barley 194 1.46 1.03 0.91 0.16 49 0.96 0.17 0.95 0.11
2019 Nurcoung Canola 96 1.61 0.91 0.81 0.11 24 1.02 −0.07 0.71 0.13
2019 Nurrabiel Wheat 96 1.73 0.50 0.90 0.11 24 0.97 0.15 0.84 0.14
2019 Wallup Wheat 101 1.70 0.64 0.76 0.17 25 1.09 −0.40 0.82 0.18
2019 Wickliffe Wheat 128 2.40 −0.77 0.79 0.25 32 0.86 0.55 0.88 0.19
2020 Woorak Wheat 125 1.60 0.81 0.98 0.08 31 0.98 0.04 0.98 0.07
2020 Wickliffe Canola 96 1.22 1.57 0.93 0.08 24 0.99 0.03 0.89 0.10
2021 Nurcoung Faba beans 91 1.69 0.64 0.89 0.17 23 1.06 −0.20 0.91 0.16
2021 Nurrabiel Canola 91 1.56 1.07 0.92 0.11 23 1.09 −0.33 0.90 0.12
2021 Wallup Wheat 91 2.03 0.04 0.94 0.15 23 1.03 −0.12 0.96 0.14
2021 Wickliffe Wheat 125 2.20 −0.17 0.98 0.10 31 0.96 0.17 0.98 0.08
All All All 1664 1.57 0.85 0.86 0.19 416 1.04 −0.14 0.86 0.19

3.2. Evaluating the Effects of Gaps in the Time Series

While the methods used were developed to work on an irregular time series, cloud
cover can lead to significant gaps (e.g., 30 days or more between clear sky image acqui-
sitions). An analysis was performed to assess the impacts of increasing gap sizes on the
estimated biomass. The analysis utilized three wheat paddocks in Western Australia, with
clear sky conditions throughout 2019 providing an almost continuous time series for the
year. The S-2 SLC classes 4 and 5 were used to verify that the paddock was comprised of
≥99% cloud free pixels for each date. One hundred pixels were randomly selected from
each paddock, each representing a time series for the winter crop growing season. These
time series were analysed by iteratively removing dates to simulate cloud gaps, with the
synthetic gap centred at mid-season. The gap sizes graduated from four days to a maximum
of 69 days. With each gap iteration, the time series was fitted to compute the sNDVI for
daily time steps. Figure 6 shows the mean of the 100 time-series (pixels) from one paddock,
showing the effect of the increasing gap size on the interpolated NDVI values (Figure 6a)
and the summed NDVI time series (Figure 6b). The impact of the increasing gap size on the
sNDVI values for the three paddocks is shown in Figure 7. The percent change represents
the relative change from the minimum gap sNDVI and is based on the average of 100 time
series (pixels) from each of the three paddocks. These differences were computed at daily
time steps. Each point in the graph represents the greatest percent change (minimum value)
from DOY 200 to DOY 365, which represented the growing season.

The error in sNDVI due to gaps was translated to the estimated AGB, but the mag-
nitude depended on the size of the gap and the date of the fitted sNDVI. Table 3 shows
the impact of the increasing gaps on the estimated biomass for the three paddocks. The
model parameters from Table 2 (last row) were used to translate the sNDVI values fitted
with gaps of about 31 days (one month) and 67 days (maximum gap). The change in AGB
due to the gap was expressed as the difference between the AGB estimated with no gap
and with the gap, divided by the AGB without the gap effect.
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Table 3. Effect of the time-series gap centred at mid-season on estimated AGB.

Paddock DOY AGB kg ha−1 Gap in
Imagery, Days

Change in
AGB, % 1

Gap in
Imagery, Days

Change in
AGB, % 1

A10 2019
129 0 31 69
229 872 31 −21% 69 −39%
310 3077 31 −16% 69 −35%

G09 2019
136 0 32 69
236 744 32 −39% 69 −76%
328 2845 32 −20% 69 −48%

K26 2019
136 0 32 67
236 710 32 −11% 67 −85%
330 2553 32 −9% 67 −51%

1 The percent change was determined as the AGB with the gap minus the original AGB divided by the origi-
nal AGB.
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3.3. Filling of Gaps in the Time Series

While gaps due to cloud cover may be unavoidable, other satellite and/or ground
based measurements may be used to fill these gaps. Four of the 2021 paddocks in the
Training dataset had frequent cloud cover, and Planet imagery and ground based active
optical measurements were used to fill between the S-2 observations. Planet NDVI values
were used to estimate the S-2 NDVI based on relationships developed with coincident
imagery. One hundred fifty image pairs of coincident S-2 and Planet imagery were acquired
during 2019–2021, for the same four paddocks. A regression model was developed on the
coincident imagery, randomly selecting 200 pixels from each pair (total N > 28,000). Eighty
percent of the data was used for calibration, and the remaining 20% was used to validate
the model. The results are shown in Table 4. The calibration results indicate an uncertainty
of 0.06 NDVI of the estimated S-2 values.

Table 4. Estimating the S-2 NDVI values using Planet imagery 1.

Regression Model N Intercept Slope Adj. R2 RMSE

Calibration: NDVIS-2~NDVIPlanet 23,300 −0.0512 1.105 0.95 0.06
Validation: NDVIS-2~NDVIEstimated 5825 −0.0026 1.005 0.95 0.06

1 Based on 150 pairs of S-2 and Planet imagery, randomly selecting 200 pixels from each pair. The image pairs
were acquired during 2019–2021, over four paddocks in VIC included in the overall datasets.

Likewise, ground-based measurements of the NDVI using an active optical sensor
(Model ACS430, Holland Scientific, Lincoln NE USA) were related to the S-2 NDVI based
on coincident sets of measurements. The ground-based NDVI measurements, made along
tracks throughout the paddocks, were interpolated to 5 m grid cells. Nine pairs of coincident
S-2 imagery and active optical NDVI maps were acquired, and approximately 200 pixels
were randomly selected from the set. Note that the active optical NDVI does not ‘saturate’
at high green biomass values as quickly S-2 or Planet NDVI, so the relationship was fitted
with a second order polynomial. The resulting model is shown in Table 5.
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Table 5. Estimating the S-2 NDVI values using active optical measurements 1.

Regression Model N Intercept NDVIACS430 (NDVIACS430)2 Adj. R2 RMSE

Calibration:
NDVIS-2~NDVIACS430

1410 −0.0308 2.009 −1.05255 0.81 0.07

N Intercept NDVIS-2 Estimated Adj. R2 RMSE

Validation:
NDVIS-2~NDVIS-2 Estimated

353 0.000 0.992 0.81 0.07

1 Based on nine pairs of coincident S-2 imagery and ground-based active optical imagery. The ground-based
measurements made along tracks throughout the paddocks were interpolated to 5 m grid cells.

Figure 8 shows an example time series from one of the four 2021 paddocks, sown
to canola. Note that the S-2 observations (open triangles) completely missed the first
NDVI peak, which was defined by the modelled S-2 pixels based on Planet and active
optical NDVI values. The estimated AGB at DOY 266 (near mid-season) increased from
5984 kg ha−1, using only S-2, to 6796 kg ha−1, with the complete time series.
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Figure 8. Example AGB estimates for a canola crop grown in 2021 near Nurrabiel Victoria with and
without a complete time series. The S-2 time series from the original pixels (open triangle) had a gap
of 92 days, which resulted in an AGB estimate at DOY 266 of 5984 kg ha−1. Supplementing the time
series with Planet imagery (open circles) and active optical (filled square) increased the estimated
biomass to 6796 kg ha−1.

4. Discussion

In the previous section, a framework was presented to estimate the AGB, relating
the NDVI time series to measured AGB. Accuracy results were presented using local
calibrations, calibration from pooled data, and applying the calibration from one dataset to
another. Validation using 20% of the Training dataset generated models for the individual
paddocks with R2 values ranging from 0.79 to 0.98, while the pooled data resulted in an
R2 of 0.86 (Table 2). Eight of the twelve paddocks had models with validation R2 values
greater than the pooled data. The slope for the pooled data (1.04) was within the range
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of the individual paddocks (0.86 to 1.09). The intercept value for the pooled data (−0.14)
was also within the range of the individual paddocks (−0.44 to 0.55). These parameters
suggest that the individual model fitting did not always result in more accurate estimations
of the AGB.

Applying the model from the pooled data (last row of Table 2) on the separate Val-
idation dataset resulted in an apparent bias in the fitting of the Validation dataset. This
can be seen in Figure 4 noting the 1:1 line (dotted). While the slope was close to 1 (0.97),
and the R2 was 0.88, the model underestimated the measured AGB (intercept = 0.26). This
difference is explained by the apparent differences in the relationships between the AGB
and sNDVI for the Training and Validation data (Figure 9). This may be due in part to the
ground footprint of the sNDVI in the Validation dataset. Each data point represents an
average of seven to nine S-2 pixels, rather than one or two as with the Training dataset.
Taking the mean NDVI of several pixels might have the effect of lowering the NDVI and
sNDVI values for the same measured AGB value. The results showed that differences in
the relationship between the measured AGB and the remotely-sensed NDVI can translate
through to the AGB estimates.
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In addition to the appropriate calibration data, filling gaps in the time series is impor-
tant to the estimation of AGB. The results from the gap analysis indicate that increasing the
mid-season gap resulted in a reduction in the peak NDVI and sNDVI values, as well as
a change in the time series (Figure 6). The analysis of three wheat paddocks indicated a
change in the sNDVI of −0.43% for each additional gap day (Figure 7). The translation of
this error to the estimated AGB depends on the timing of the AGB estimates as well as the
size of the gaps. However, the results shown in Table 3 indicate there can be substantial
(e.g., >75%) decreases in the AGB with gaps exceeding 60 days. Figure 8 shows an example
time series and the resulting AGB from one of the 2021 paddocks in the Training datasets,
where a gap of 92 days in the S-2 imagery resulted in a 12% decrease in the estimated AGB.

The results support the use of the framework as an approach to estimate the AGB
directly from the NDVI. Other approaches utilize the relationship between the AGB and
the accumulation of absorbed photosynthetically active radiation (PAR), as presented
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by Monteith [35]. Meng et al. [36] modelled the fraction of PAR utilized by the canopy
(fPAR) from the NDVI to estimate the biomass for winter wheat, using MODIS imagery
downscaled to 30 m. They performed a validation with 40 data points of direct biomass
measurements, reporting an average relative error of about 17%. Their results also indicated
the increase in uncertainty with the biomass amount (as seen in Figure 5 from that paper).
Relating the NDVI time series to fPAR to model biomass takes advantage of the differences
in fPAR and light use efficiency but requires measurements and/or assumptions to compute
this quantity (e.g., air temperature and evapotranspiration).

Implementation of the presented framework requires the selection or development of
a calibration model and the availability of a suitable time series. The calibration between
the sNDVI and the measured AGB can be developed for specific crops (paddock and year),
across multiple sites, or taken from the model presented within this paper. The most
direct use of the framework is to develop a model for a given paddock and crop (growing
season). When planning biomass cuts, the range of biomass values (e.g., <1000 kg ha−1 to
>5000 kg ha−1) is more important than the phenological stages; so, a sampling strategy of
regular intervals (e.g., every 2–3 weeks) is advised. Ideally, there should be sufficient data
(e.g., >100 data points for the season) to provide calibration and validation for a model.
The results demonstrate the successful use of pooled data using similar sites, with the same
sampling techniques and image processing to calculate the sNDVI. If applying a model that
was derived from other datasets, this may produce increased errors in the AGB estimates
(as exemplified by the Validation dataset results presented). If applying a model derived
from separate data, any available measured AGB should be checked against the calibration
dataset used. Regardless of the calibration model used, it is important to start with a cloud
free time series with minimal gaps. To build the NDVI time series, S-2 surface reflectance
data offer an excellent source of public domain imagery. Large gaps in the time series
(e.g., >30 days) should be filled with supplemental data, as shown in the results. If active
optical sensing is available, these data can be utilized during prolonged cloudy periods.
An alternative is to ‘back fill’ using other imagery sources (e.g., daily Planet) if cloud-free
imagery is available.

The framework presented offers the ability to estimate the spatial estimates of the
AGB at daily time steps, which in turn allows for daily rates of change in crop growth.
Spatial differences in the AGB and crop growth rates across a paddock are being used as
an indicator for soil constraints [37]. Figure 10 shows an example of the AGB and rate of
change for a canola crop grown near Nurrabiel Victoria, for DOY 300 in 2021. The AGB
appeared to vary between 11.7 and 13.8 T ha−1 for most of the paddock area (note the red
linear area is an access road and has low AGB values). The rate of change was determined
by fitting the AGB as a function of the DOY using a second order polynomial for each
pixel independently. The first derivative of the fitted equation was then used to indicate
the rate of change (ROC) in T ha−1 day−1. The AGB and ROC datasets can be compared
within the growing season and across paddocks, crops, and years. Figure 11 shows an
example of the AGB and ROC for a paddock near Nurcoung, Victoria. The maps shown
compare AGB and ROC for a canola crop grown in 2019, a wheat crop grown in 2020, and
a faba bean crop grown in 2021. These data represent the inherent variability in the soil,
as manifested in the corresponding crop growth, as well as variability between different
crop types and seasonal conditions. These resulting spatial and temporal datasets are being
incorporated into machine learning approaches to relate change in the crop growth to other
spatial and temporal datasets characterizing soils, leading to a better understanding of
crop growth restraints, the effects of amelioration activities, and more efficient crop and
paddock management.
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5. Conclusions

The framework presented offers the ability to estimate the spatial estimates of the AGB
at daily time steps and spatial resolutions well suited to characterise in-field biomass and
crop growth. The resulting R2 values for the measured and estimated AGB ranged from 0.79
to 0.98 for individual paddocks, and the R2 from a dataset pooled (multiple crops, years,
and locations) was 0.86. The AGB and crop growth rate datasets produced may be quite
valuable for agricultural applications such as agronomic research, crop management (e.g.,
fertiliser requirements), and input and validation for the refinement of crop biophysical
models. The results presented in this paper highlight the importance of frequent image
capture to support these spatial AGB estimates, with solutions given to reduce the impact
of this issue.

The results presented show that the AGB can be estimated with a model developed
on a separate dataset. However, any inherent differences in the relationship between the
measured biomass and the sNDVI will impact the accuracy of the estimated AGB. Further
development to reduce the impacts of differences across the datasets (crops, local soil and
weather conditions, and sensor used) could include establishing more robust and universal
models based on normalised values of sNDVI and AGB. Further testing of parameters used
to calculate sNDVI such as the green-up date and the assumptions used to estimate the
greenness threshold would be valuable in expanding the broader applicability of these
models, as well as potentially reducing the error associated with these estimates.
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