

Impact of inoculum loads on in crop disease risk from Septoria tritici blotch (STB) in wheat

Authors

Hari Dadu¹, Tara Garrard², Julian Taylor³, Grant Hollaway^{formally 1,4}

¹Agriculture Victoria, Horsham, Vic, 3400

²South Australian Research and Development Institute (SARDI), Urrbrae, SA, 5064

³School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, 5005

⁴Astute Ag, Horsham, Vic, 3400

Background

Stubble is the primary source of STB inoculum. Therefore, the physical amount of the stubble has the potential to determine the disease pressure in wheat crops. Large areas under susceptible varieties and adoption of stubble retention systems in the medium and low rainfall zones of the southern region have raised STB inoculum levels unprecedently causing increased disease prevalence and severity. However, there is limited information on the amount of inoculum required and its interaction with different environments to develop STB epidemics. This information where available is critical to improve integrated disease management strategies for STB control in this region. Therefore, the impact of increasing inoculum loads on disease severity and grain yield in the MRZ was evaluated in this study.

Aim

To determine the impact of inoculum loads of STB on wheat grain yield and quality.

Methods

One field experiment was conducted in the MRZ at Longerenong, Victoria during 2023 to evaluate the impact of increasing inoculum levels on disease severity and grain yield. Six treatments including different amounts of inoculum and a control with minimum disease were applied to a susceptible to very susceptible variety, LRPB Impala (SVS). Treatments were separated by double-buffers of a non-host (barley) to reduce inter-plot disease spread. Plots were visually assessed for disease severity and harvested for grain yield.

Trial details

Location:

Location	Rainfall zone	Soil type	Growing season rainfall (mm)
Wallup (VIC)	MRZ	Clay	231

Treatments:

1. Minimum disease
2. Zero stubble

3. Quarter kilogram stubble / plot
4. Half kilogram stubble / plot
5. One Kilogram stubble / plot
6. Two kilogram stubble / plot

Variety: LRPB Impala (SVS)

Trial design: Randomized complete block design

Replicates: 6

Sowing and harvest details:

Location	Rainfall zone	Sowing date	Sowing rate (plants/m ²)	Harvest date	Trial average yield (t/ha)
Wallup (VIC)	MRZ	2 nd May 2023	150	17 th December 2023	5.3

Trial inputs: UREA and MAP applied and managed as per best practice and kept weed and pest free.

Chemical applications:

Fungicide application timing	Product	Active ingredient (gai/L) [#]	Rate
Seed	Jockey Stayer®	Fluquinconazole 167g/L	300 mL/100 kg seed
Foliar at Z31	Soprano®	Epoxiconazole 500 g/L	125 mL/ha
Foliar at Z39	Elatus Ace®	Benzovindiflupyr 40g/L + Propiconazole 250 g/L	500 mL/ha

[#] gai = grams active ingredient

Results

Stubble application significantly increased STB severity and caused grain yield loss (11%) in wheat variety LRPB Impala (Table 1) demonstrating the importance of stubble management in wheat as part of an integrated STB control strategy. Stubble retention and quantities influence how much inoculum is available to infect wheat crops from one year to the next. As shown in this study, yield losses in wheat can increase if higher stubble loads are present, so wheat-on-wheat should be avoided where possible to reduce yield losses. When wheat is sown into wheat stubble, stubble management techniques that aim to reduce stubble load provides a potential option to manage early epidemics, noting STB infection will also come from wind-borne spores from adjacent paddocks.

Table 1: Septoria tritici blotch severity (% leaf area affected) and grain yield of wheat variety LRPB Impala (SVS) in response to variable loads of stubble inoculum at Wallup, Victoria during 2023

Stubble treatments	Stubble	Disease severity		Grain yield (t/ha)	Yield loss %		
	loads (t/ha)	(% leaf area affected)					
	Z31 2 nd	Z61 21 st					
	Aug [#]	Sep					

Minimum disease	-	4 ^a	3 ^a	5.60 ^c	-
Zero stubble (0)	0	7 ^b	13 ^b	5.33 ^b	-
Quarter kilogram stubble (0.25kg)	0.14	8 ^{bc}	16 ^{bc}	5.40 ^b	-
Half kilogram stubble (0.5kg)	0.28	9 ^{bc}	17 ^{bc}	5.30 ^b	-
One kilogram stubble (1kg)	0.56	8 ^{bc}	15 ^{bc}	5.30 ^{ab}	-
Two kilogram stubble (2kg)	1.11	9 ^c	18 ^c	5.03 ^a	11
P		0.002	<0.001	0.002	
LSD (P=0.05)		2.36	4.09	0.25	

#Within a column, means with one letter in common are not significantly different at 0.05.

Conclusion

The results demonstrated that managing stubble would alleviate the risk of STB. Lowering stubble quantities reduced grain yield losses due to STB in 2023 and should be considered as part of integrated control strategy. There are significant agronomic benefits with stubble retention systems but on the other side they encourage carry over of inoculum and increase disease risk in-crop. In seasons with significant wet conditions, management of stubble loads might prove beneficial to reduce carry over of inoculum and early disease epidemics in the following season.

Alternatively, when susceptible cultivars are sown away from stubble, other control options should be considered to reduce the chances of infection due to wind borne spores from adjacent wheat paddocks.

Acknowledgements

This research was co-invested by the Victorian Government (Agriculture Victoria) and GRDC through the 'Epidemiology of Septoria Tritici Blotch in the low and medium rainfall zones of the Southern region to inform IDM strategies' (DJPR2104_004RTX).

Thanks to Agriculture Victoria's field crops pathology team Horsham for technical and continued support in trial management. Thanks also to our research collaborators Drs Mark Mclean (Project Platypus), Andrew Milgate (NSW DPI), Julian Taylor (University of Adelaide) and Tara Garrard (SARDI) for their scientific inputs.