

Annual Results Report

2025

Closing the Economic Yield Gap for Grain Legumes in Western Australia

Project code: GGA2110-002SAX

Prepared by:
Connor Baker
Rachyl Stover
Joy Valle

research@cfig.org.au

Corrigin Farm Improvement
Group

Date: 13 March 2025

Contents

ANNUAL RESULTS REPORT.....	1
KEY MESSAGES.....	3
SUMMARY.....	3
BACKGROUND	4
OBJECTIVES	4
METHODS	5
RESULTS.....	6
COMMUNICATIONS AND EXTENSION.....	16
PHOTOS.....	22
REFERENCES AND USEFUL LINKS	23

KEY MESSAGES

List the key messages of the report.

- Local growers gained a better understanding of legumes suitable in the Eastern Wheatbelt
- Legumes have a role in low rainfall farming systems
- Direct comparison of yields for Lupins, Field Peas, Vetch and Chickpea

SUMMARY

Summarise the results.

The 2024 Narembeen legume trial provided valuable insights into the performance of different break crops under low rainfall conditions. The standout result was field peas achieving the highest average yield of **1.15 t/ha**, followed by lupins (**0.90 t/ha**), chickpeas (**0.55 t/ha**), and vetch (**0.50 t/ha**). The chemical fallow did not produce a yield but played a role in soil moisture conservation.

The trial demonstrated that field peas were the most productive option, indicating their suitability for low rainfall areas. Lupins also performed well, reinforcing their viability as a break crop. Chickpeas and vetch had lower yields, suggesting that their agronomic fit may require further optimization.

Subsequent wheat crop yields following different break crops are:

- Field Pea Stubble: 3.48 t/ha (Highest yield)
- Chickpea Stubble 3.43 t/ha
- Chemical Fallow: 3.39 t/ha
- Vetch Stubble: 3.33t/ha
- Lupin Stubble: 3.23 t/ha (Lowest yield)

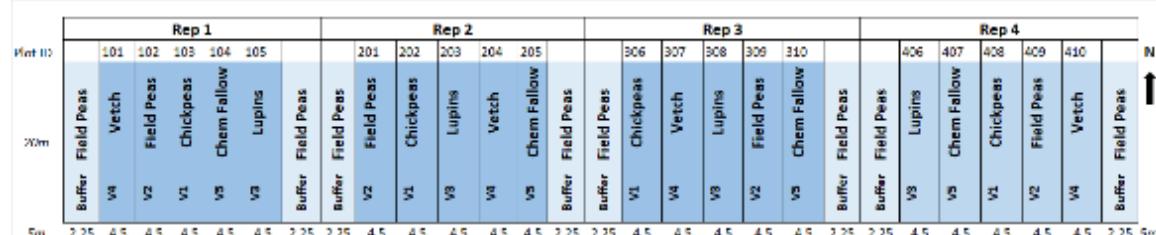
To note previous years trial was missing legume yields as rogue cows grazed the site. So, this yields wheat on previous legumes can be seen as influenced. Overall assumption is that nitrogen was fixed when cows grazed site.

BACKGROUND

Break crops are widely acknowledged as being necessary to manage the biological constraints that reduce cereal crop production. One of the constraints in the use of a single or double break crop sequence is that the Gross Margin of the most commonly used break crops are generally less than growing a cereal crop, especially in the low rainfall zone (LRZ). As a result, break crops are used sparingly by growers in crop rotations with the aim of maintaining the most profitable sequence of crops while maintaining reasonable control of weeds and diseases. The short-term decrease in economic return from growing a break crop is offset by the longer-term benefits of decreased production costs and increase the productivity of cereal crops for many years following.

The most desired traits of a break crop are to be highly effective in controlling weeds and disease while also being highly profitable. The downside of high value legumes such as chickpeas are that potentially these break crop options have less developed (and therefore less effective) weed and disease management packages for the WA environment. The timing of fungicide applications also raises concerns for growers with achieving effective applications to manage disease loading.

OBJECTIVES


The CFIG component of the grain legume project over 2023 and 2024 was to compare the yield potential for five grain legume crops in our area and assess the impact on wheat yield in the following year. The small plot trial assessed Lupins, Field Pea, Vetch, chem fallow and Chickpea. These legumes are seen as viable options for the Narembeen area and have been used in this trial for this comparison.

METHODS

A small plot trial was established in Narembeen WA in the Low rainfall zone (LRZ) of the wheatbelt that covers the main soil type in the region where break crops and high value legumes can be grown (Treatments: Table 1. Site layout: Figure 1). CFIG were responsible for co-ordinating the activities of the site with the host farmer, service providers (Living Farms), data collection, and communication of outcomes of the project to the local region. The management of the trial site aligned with the host growers' current practices, and was sown, sprayed and harvested with service providers. Small plot trial machinery and all treatments were replicated for statistical rigour.

Table 1. Narembeen small plot trial treatments

Treatment Number	Treatment										Crop Variety	
V1	Chickpea										Striker	
V2	Field pea										Kasper	
V3	Lupin										Jurien	
V4	Vetch										Volga	
V5	Chemical Fallow										-	

Figure 1. Narembeen small plot trial layout 2024 with 4 reps of complete randomised blocks. Rep 4 was seeded without inoculant for demonstration and extension purposes.

Soil tests were conducted at the beginning of the season to determine the soil water content and to assess the nutrient requirements and presence of any chemical barriers in the soil (e.g. acidity, nutrient toxicity). The seeding rates and type of fertiliser used were implemented as per current grower practice for the region.

The collection of in-season crop production data was completed using standardised sampling procedures to enable the data to be analysed for significant differences. However, the grower group experienced a large staff change around halfway through the year with minimal handover for all projects which meant some data was missed.

RESULTS

- Paddock history, Input Summary & Site Characterisation

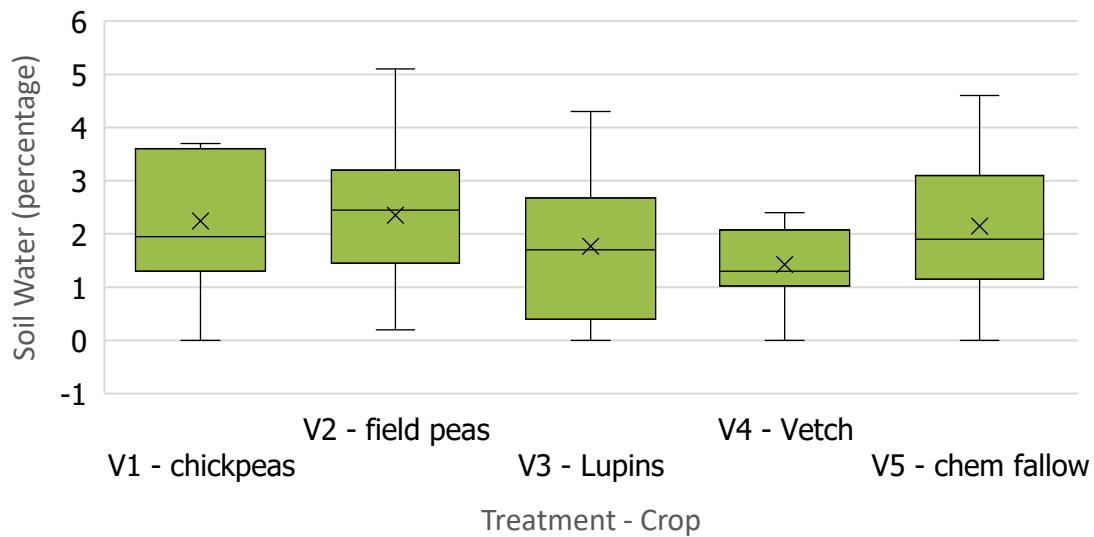
Table 2 Paddock history, sowing details, inputs and site characterisation for Narembeen small plot trial 2024

Location	Narembeen, WA												
Plot size & replication	Small Plot - 4 replicates, randomised. Plot size: 20m x 4.5m												
Paddock rotation	2021: Chemical fallow	2022: Cutubury Canola (TT)	2023: Wheat	2024: Legume trial									
Tillage type	Minimum tillage												
Soil type	Brown Sandy Loam												
Soil pH (CaCl₂)	0-10cm: 5.9	10-30cm: 7.2	30-50cm: 6.1										
Soil moisture, depth (cm)	Poor (>5 cm)												
Clod size	Medium (5-10 cm)												
Seed bed	Standing stubble (stubble loading 10-20%)												
Sowing date	28/05/2024												
Sowing equipment	Knife points and press wheels (sowing depth 20-25 mm, row spacing 25.4 cm)												
Sowing speed	4 km/hr												
Sowing rate	Chickpea (Striker): 80 kg/ha Field pea (Kasper): 80 kg/ha Lupin (Jurien): 80 kg/ha Vetch (Volga): 20 kg/ha												
Fertiliser	MAP 40 kg/ha												
Herbicides, insecticides & fungicides	<i>Pre-emergent:</i> Trifluralin 2 L/ha Weedmaster DST 2 L/ha Rustler 1 L/ha Bifenthrin 100 mL/ha Chlorpyrifos 1 L/ha												
	<i>Post-emergent:</i> Clethodim 330 mL/ha Elantra Xtreme 100 mL/ha Aviator Xpro 600 mL/ha Transform 50 g/ha Affirm 300 mL/ha Transform 50 g/ha Affirm 300 mL/ha												
Machinery	Plot seeder, Plot sprayer, Plot harvester												
Farmgate prices													
Chickpea per T	\$750	$750 \times 0.55 = \$412.5$											
Field Pea per T	\$550	$550 \times 1.15 = \$632.5$											
Lupin per T	\$450	$450 \times 0.90 = \$405$											
Vetch per T	\$550-\$650	$600 \times 0.50 = \$300$											
Rainfall	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Total
	17.8	29.4	69.2	0	5.6	39.4	85.0	41.2	14.6	7.8	18.6	13.2	341.8

Annual
rainfall

Growing season rainfall (April-October) 193.6 mm

• **Soil and plant nutrition analysis**


Table 3 Pre-seeding soil analysis results for Narembeen small plot trial

Lab No.	2ASS24029	2ASS24028	2ASS24027
Longitude			
Latitude	118.290325328708, -32.0569761994136		
Depth	0-10	10-30	30-50
Texture	2.5	3.0	3.0
Colour	BRYW	GRYW	LTBR
Gravel (%)	5-10	15-20	10-15
NO3 (mg/kg)	32	2	2
NH4 (mg/kg)	1	1	1
OC (%)	1.11	0.19	0.33
P (mg/kg)	35	6	6
PBI	46.2	79.5	113.7
K (mg/kg)	153	50	43
S (mg/kg)	11.0	28.0	37.6
pH	5.9	7.2	6.1
pH H ₂ O	6.4	7.7	6.5
EC (dS/m)	0.133	0.216	0.116
Ca - exch (meq/100g)	3.47		
Mg - exch (meq/100g)	1.16		
Na - exch (meq/100g)	0.12		
K - exch (meq/100g)	0.36		
Al - exch (meq/100g)	0.038		
Cu (mg/kg)	0.41		
Zn (mg/kg)	0.71		
Mn (mg/kg)	3.22		
Fe (mg/kg)	25.10		
B (mg/kg)	1.32		
Moisture % (%)	5.59		

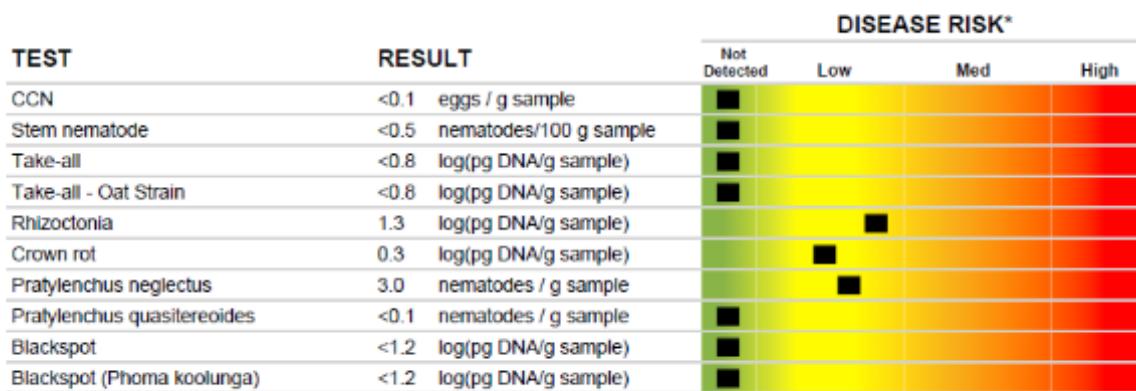
• **Soil moisture at seeding and harvest**

Soil moisture at harvest was not recorded.

Figure 3 Soil moisture (percentage of soil volume) in the top 10 cm of sample plots at seeding

- **Predicta B results**

Predicta B results reported low pathogen (Rhizoctonia, Crown Rot and *P. neglectus*) loading. Screenshots of results pasted below.


Molecular Diagnostic Centre
Gate 2A, Hartley Grove
URRBRAE SA 5064
Ph 08 8429 0290

Sample: AAJ1854

Grower: D COLE
Paddock: RISKWISE
Nearest town: CORRIGIN
Region: WESTERN

Report date: 02/08/2024
Date sampled:
Dry weight (g): 548
Sample condition: Damp
Core depth:
Sampling strategy:
Stubble added: Not Specified

Paddock history	2 years ago	Last year	This year
Crop / variety			

*Risk categories should be used as a guide only, may be subject to regional and seasonal differences, and may be revised over time.

UNDER EVALUATION	RESULT	Not Detected	Low	Med	High
Common root rot	<0.6 log(pg DNA/g sample)	■			
Pythium clade f	1.1 log(pg DNA/g sample)		■		
Yellow leaf spot	<0.3 log(kDNA copies/g sample)	■			
Eyespot	<0.3 log(kDNA copies/g sample)	■			
White grain disorder	<0.3 log(kDNA copies/g sample)	■			
Pratylenchus penetrans	<0.1 nematodes / g sample	■			
Pratylenchus thomei	<0.1 nematodes / g sample	■			
Charcoal rot	2.3 log(kDNA copies/g sample)			■	
Ascochyta blight of chickpea	<0.1 log(kDNA copies/g sample)	■			
Sclerotinia sclerotiorum/S. minor	<0.1 log(kDNA copies/g sample)	■			

**Population densities are based on the pathogen levels detected in PREDICTA samples across the industry. These are not disease risk categories.

PREDICTA® is a registered trademark of Bayer® S.A.S.

DISCLAIMER:

1. Use of this Report and the PREDICTA®B service is governed by the Terms of Use distributed as part of the PREDICTA®B sample test kit.
2. PREDICTA®B test results must be interpreted in the context of local conditions, crop history and individual experiences.
3. PIRSA and its employees do not warrant or make any representation regarding the use, or results of the use, of the information contained herein as regards to its correctness, accuracy, reliability and currency or otherwise. PIRSA and its employees expressly disclaim all liability or responsibility to any person using the information or advice.
4. Results apply only to the sample(s) received.

Molecular Diagnostic Centre
Gate 2A, Hartley Grove
URRBRAE SA 5064
Ph 08 8429 0290

Sample: AAJ1854

Report date: 02/08/2024

Grower: D COLE
Paddock: RISKWISE
Nearest town: CORRIGIN
Region: WESTERN

Date sampled:

Dry weight (g): 548

Sample condition: Damp

Core depth:

Sampling strategy:

Stubble added: Not Specified

Paddock history	2 years ago	Last year	This year
Crop / variety			

Pathogen comments

Low Rhizoctonia: Prevent weeds establishing after break to minimise inoculum multiplication prior to seeding. If paddock has a history of Rhizoctonia, cultivation prior to seeding, sowing early & adequate Zn, N and P will help reduce yield losses.

Low risk P. neglectus: Yield losses range from 0 - 10%. Select tolerant varieties

Low Crown Rot: losses in bread wheat should not exceed 5%, risk greater in durum wheat

Agronomist	Mobile	Accreditation number
Valle, Joy		3732

Molecular Diagnostic Centre
Gate 2A, Hartley Grove
URRBRAE SA 5064
Ph 08 8429 2243

Sample: **RNC1397**

Grower: **D COLE**

Paddock: **RISKWISE.**

Nearest town:

Region: **SOUTHERN**

Report date: **08/08/2024**

Date sampled: **01/01/0001**

Dry weight (g): **322**

Sample condition: **Damp**

Core depth:

Pulse/legume history	Group E & F*	Chickpea	Lupin/serradella	Mungbean
----------------------	--------------	----------	------------------	----------

Year last grown eg 2015:

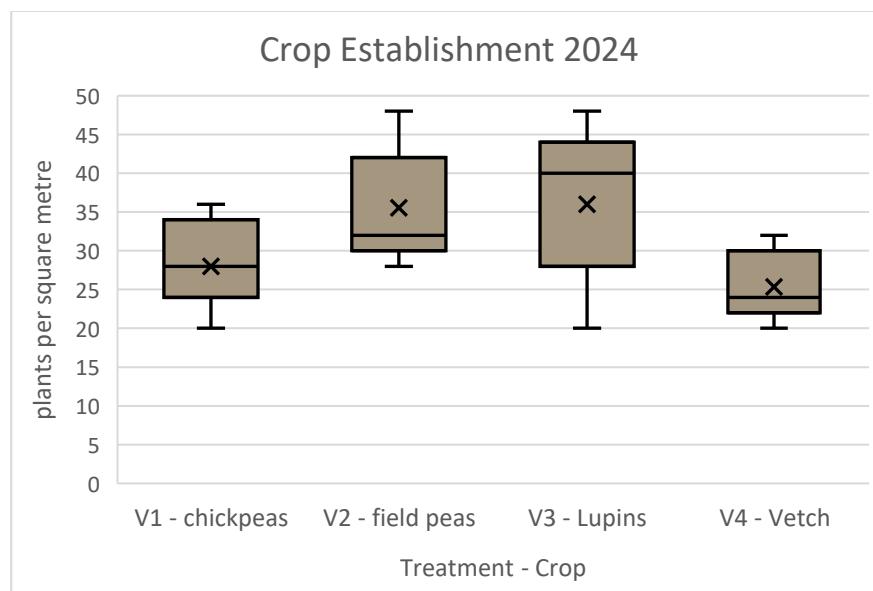
*Group E & F crops include faba bean, lentil, field pea, vetch and lathyrus

Intended crop	Soil pH(Ca):	Soil texture			
	5.35	Sandy loam			

Inoculation Requirement**					
BENEFICIAL ORGANISMS	RESULT	High	Medium	Low	Nil
Rhizobia Group E & F	<2.3 log(rhizobia)/g sample	■			
Rhizobia Group G & S	2.9 log(rhizobia)/g sample		■		
Rhizobia Group N	<2.3 log(rhizobia)/g sample	■			

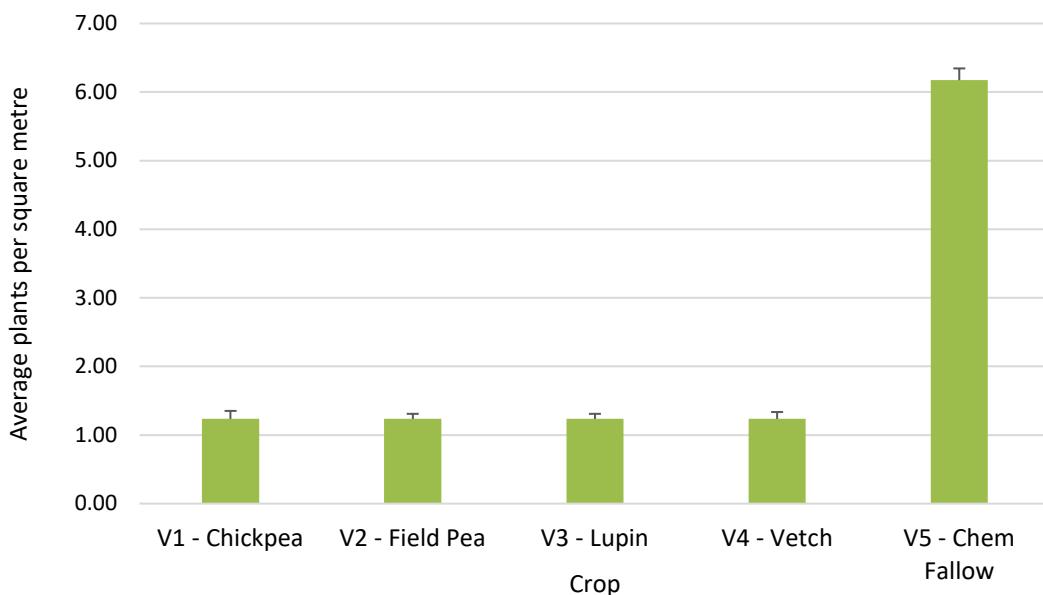
**Inoculation requirement categories may vary between regions and seasons, and may be revised over time.

Comments on results:


Rhizobia Group E & F was not detected, apply inoculant if planning to grow faba bean, lentil, field pea or vetch, apply double inoculation rate if pH (Ca)<5.5.

Rhizobia Group G & S was detected at a low level, applying inoculant may be beneficial if planning to grow lupin or serradella.

Rhizobia Group N was not detected, apply inoculant if planning to grow chickpea, apply double inoculation rate if pH(Ca)<5.5.


Crop establishment and weed counts

Mean crop establishment was higher in field peas and lupins than chickpeas or vetch (figure 4). The degree of crop establishment for lupins varied across replications more than the other legumes. Overall based on DPIRD research in the past, chickpeas should be 30-35 plants per square metre, field peas 35-45 plants per square metre, Lupins 40-50 plants per square metre, Vetch (depends on if harvesting or using for hay) 45-65 plants per square metre. Based off these numbers plant establishment was good except for the vetch being slightly light.

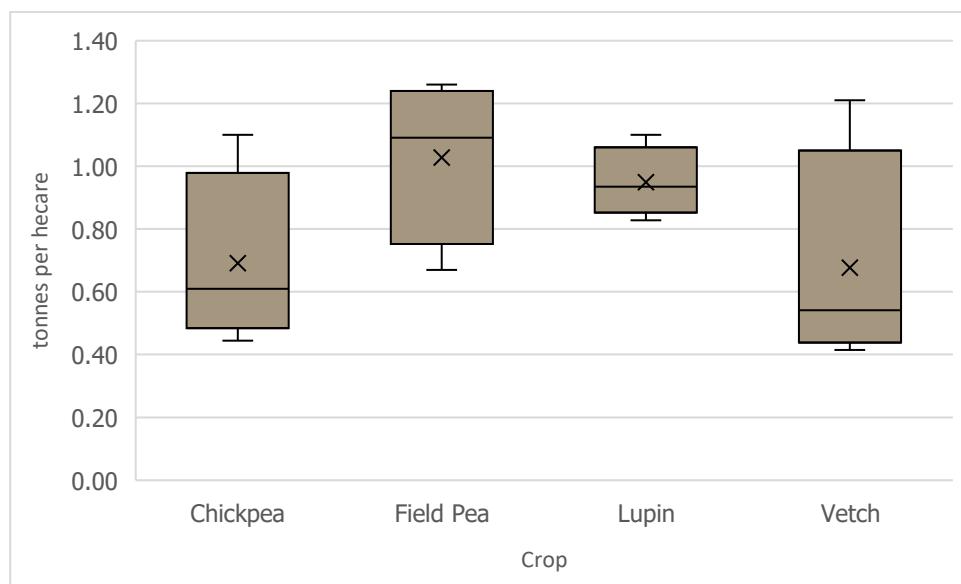
Figure 4 Crop establishment (plants per square metre) for each treatment crop; showing minimum, maximum, mean ('x') and median

Weed loading (figure 5) was evenly low for all treatments apart from chemical fallow. This shows the importance of crop competition when fighting weeds. A later weed count in the season would have been beneficial to see which competed best. Overall site was very clean and well looked after by living farms.

Figure 5 Average weed counts per square metre for each legume treatment crop

• **Crop disease assessment and nodulation.**

The CFIG team (Connor Baker and David Storer) assessed the nodulation within the plots later in the season, all had good visual nodulation and the trial was disease free having been sprayed one week prior to field work.


• **Grain quality**

Of the three legume types tested for grain quality (table 4), the lupin used in the trial (Jurien variety) contained the highest average protein. Unfortunately, vetch sample results were ordered with the rest of the results but were not received.

Table 4 Grain quality results from CBH Analysis. Vetch analysis was ordered but not received.

Treatment No.	Treatment	Crop Variety	Ave. Protein	Ave. Moisture
V1	Chickpea	Striker	18.60	9.40
V2	Field pea	Kasper	21.68	9.05
V3	Lupin	Jurien	31.85	8.78
V4	Vetch	Volga	NA	NA
V5	Chemical Fallow	-	-	-

• **Yield measurements**

Figure 6 Box and whisker plot displaying range, mean (x) and median yield (tonnes per hectare) harvested from the different legume crops in 2024 at Narembeen small plot site

Table 5 Economic analysis equations

Farmgate prices			
Chickpea per T	\$750	$750 \times 0.55 = \$412.5 - \$200 = \$212.5$	
Field Pea per T	\$550	$550 \times 1.15 = \$632.5 - \$200 = \$432.5$	
Lupin per T	\$450	$450 \times 0.90 = \$405 - \$200 = \$205$	
Vetch per T	\$550-\$650	$600 \times 0.50 = \$300 - \$200 = \$100$	
Chem Fallow	\$40		
Wheat on Legume stubble	Commodity Price	Difference in Wheat Yield	
Chickpea	\$300	$300 \times 0.20 = \$60$	
Field Pea	\$300	$300 \times 0.25 = \$75$	
Lupin	\$310	$310 \times 0 = 0$	
Vetch	\$300	$300 \times 0.1 = \$30$	
Chem Fallow	\$300	$300 \times 0.16 = \$48$	
Average over 2 years :	Field Peas: \$507.5	Chickpea: \$272.5	Lupin: \$205
	Vetch: \$130	Chem Fallow: \$8	

The above are assumptions based on chemical price, labour and diesel. Overall, the field peas show a cost benefit in the rotation for both years, and that chem fallow should be debated quite heavily as it is a tool for storing moisture and reducing weed issues, however if the year is promising, it may not be as beneficial as it may seem. Also to note the wheat on lupin stubble achieved a higher protein and due to this a higher quality segregation. This was reflected in the pricing of \$10 extra. To note that a control of wheat on wheat would be beneficial as a control to see what advantage the lupins had in year two. Volatility in legume grain market will see these prices shift heavily and thus the end profit margin.

CONCLUSIONS

Provide a summary of findings, including implications and future activities.

Outcomes:

Field Peas offer the best break crop option in the Narembeen area in terms of both their high yield (1.15 t/ha) and the highest wheat yield benefit the following year (3.48 t/ha) highlighting the importance of choosing break crops based on long-term profitability, not just short-term yield outcomes.

Future trials should see wheat on wheat provided to see the true amount of nitrogen/yield penalty from a cereal crop to a legume crop. To consider the longer lasting effects of the legume in the soil, fertiliser companies have trialled lupins and are seeing positive results up to three years in advance. A true trial on legumes needs to see three to five years of a true grower system. This will be beneficial to a grower as they will not reason based off short term results.

COMMUNICATIONS AND EXTENSION

1 Field Day Events

CFIG Spring Field Day 17th September 2024

Joy Valle EO at CFIG gave an update on the Grain Legume project "Closing the Economic Yield Gap of Grain Legumes in WA". (1 small plot trial and 2 contracted farmer demonstration sites with additional information gathered from other unofficial demonstration sites also). The main grain legumes trial site being a comparison of yield potential for differing grain legume crops in the region.

Figure 2 CFIG Spring Field Day Flyer

Figure 3 Grain Legumes Project discussed via at start of field day

The main field walk for the Grain Legumes Project occurred via our Narembeen Field Walk held on the 19th of September 2024.

Back at our first site, where CFIG's RiskWi\$e, Time of Sowing and Grain Legume project and trial plots are located at Dylan Cole's Narembeen property, Grower Group Alliance (GGA) project manager Dr Daniel Kidd attended as a guest speaker and spoke about the grain legumes and other projects.

He said the information they have is that all growers want and need legumes in their system in some form or another, but ultimately for farmers it came down to return on investment, particularly regarding price and variations.

Figure 4 Narembeen Field Walk Flyer

We later had a Harvest - Project Update in the CFIG Quarterly Spring Newsletter

CFIG'S HARVEST HAPPENINGS

NAREMBEEN GRAIN LEGUME PLOTS

Lopping off Legumes with Living Farm

It was harvest day for CFIG's Grain Legume and Time of Sowing trial sites recently, always an exciting part of the process for us! The lads from Living Farm, research agronomist Jacob Nenke and field operations specialist Greg Gibson, travelled out to host grower Dylan Cole's Narembeen property to harvest the two trial sites, collecting plenty of data and samples for us to collate and report on.

This is a GRDC funded project and led by GGA. The 'Closing the economic yield gap of grain legumes in WA' project looks at different ways to assist farmers to reliably and consistently grow highly beneficial legumes in their cropping rotations. Developing a deeper understanding of legumes in our area and best practice for successful and profitable legume production is key to our increased growing capability.

Figure 5 Narembeen Field Walk at Grain Legumes site update in CFIG Spring Quarterly newsletter

2 Social Media

Multiple Social Media posts were also circulated over time via Facebook, Instagram and X/Twitter.

Instagram

Facebook – Spring Quarterly circulated with Project Updates

<https://www.facebook.com/share/p/1JtPPpHpb5/>

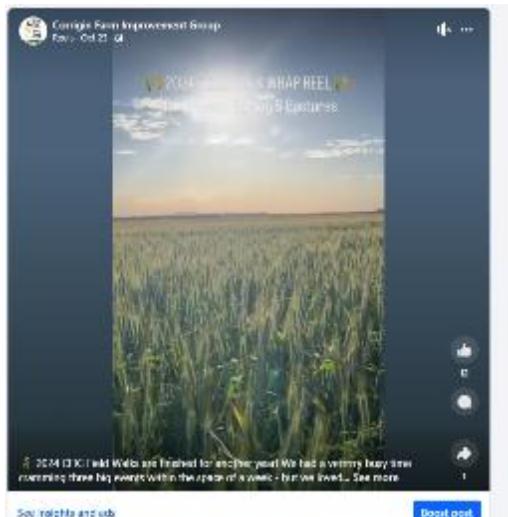
Spring Event Wrap Up

Spring Event Wrap Up
Latest Project Updates
Kununurra Study Tour Highlights
Industry News

[Read post](#)

night and day

Like


Comment

Share

<https://www.facebook.com/share/r/19hgTkWYZK/>

Field walk/s and Project/s wrap up post

<https://www.facebook.com/share/r/14m3xdUjQK/>

Recent Events: Field Walk Season

Narembeen Field Walk 13.09.24

To kick off a week of field days in September, the Conlig Farm Improvement Group (CFIG) went to Narembeen on Friday, September 14, 2024.

The field day was a casual but mighty group of keen Narembeen producers and agricultural industry representatives got together to chat about the season, any challenges they're facing and also the latest updates on local, state and relevant projects. After a brief lunch we chased straight down to the banks of the Loddon weed challenges, while looking at an existing new tool to help fight it using biocontrol methods.

The discussion was led by Department of Primary Industries and Regional Development (DPIRD) project officer Kate Denison, who showed the group the impact of the dodder weed gall maggot (*Dysaphis dodderi*) in having on the Loddon weed and the existing tools that are available. She was very keen to get in touch with any Wheatbelt farmers facing and struggling with Sclerotinia Weed in the area, as she would like to add the Gold Mine to more sites, so get in contact with CFIG and we can connect you with Kates.

Local agronomist Jack Rendell spoke about establishing large acre trials and increased time frame, and said Leacock currently have about 1000ha established in the central western Wheatbelt region, including a mix of McWalter former Mitch McLean's property. Jack spoke about the McLean's cheer below and told the group our highest winter sown crop was sown and is located to the west to go in that area, but they are trailing (now) leading K and P native to see if there's any benefit, while also adjusting sowing rates from 50kg up to 75kg. The group visited the McLean's farm following towards the end of our field walk, while also taking a look at a Living Farm trial and discussed various management strategies of McLeans.

Rock in our front, when CFIR in RockWA, Time of Sowing and Grain Legume project and trials plots are located in Dylan Cola's Narembeen property. Grower Group Alliance (GGA) project manager Dr Daniel Kidd spoke about each of these three projects.

Figure 6 Field Walk Summary in Newsletter

Conlig Farm Improvement Group
Facebook page: <https://www.facebook.com/conligfarmimprovementgroup/>
Created on: 10/09/2024

Grains Research and Development Corporation
Created on: 10/09/2024

Break crops play a valuable role. But their gross margin is often lower than cereal crops, which has limited their adoption.

Is a couple break the answer? 🤔

Lead by West Midlands Group, together with The Facey Group, Facey Group and Conlig Farm Improvement Group, a GRDC National Grower Novel Crop project has been exploring the potential of double-break crops in the medium and low rainfall zone in WA's eastern wheatbelt.

Double break crop sequences may yield higher profits than current cereal-cereal sequences.

Early sowing, particularly in mid-April, can improve chickpea profitability.

Weed populations increased in the chickpea phase but did not adversely affect the

Weed populations increased in the chickpea phase but did not adversely affect the subsequent cereal crop.

Read more: <https://bit.ly/3YQZGbQ>

■ Amy Bowden, Facey Group

#GroundCoverOnline #BreakCrops #Legumes

<https://www.facebook.com/share/p/1677PfSj4c/>

PHOTOS

Figure 7 Attendees listening to project update at beginning of Spring Field Day

Figure 8 Attendees at the Grain Legume Small Plot Trial

Figure 9 CFIG Grain Legume Small Plot Trial Site

Figure 10 Daniel Kidd and Connor Baker with attendees at field walk.

REFERENCES AND USEFUL LINKS

Provide a list of key publication references and web links relevant to the project and for further exploration of the topic.

[Albus lupin, lentil, chickpea, field pea, vetch and faba bean variety experiments – Wagga Wagga 2021](#)

[Evaluation of pulses and other seed legumes for crop rotations in Western Australia](#)

[Legume Logic, Global Vision Local Focus](#)

[Evaluation of pulses and other seed legumes for crop rotations in Western Australia](#)

[Monitoring every crop sequence across Western Australia Low Rainfall Zone](#)