

Barellan

Barellan site attributes 2022

Soil characteristics

Sampled February 2022	Unit	Soil depth (cm)	
Characteristic		0–10 cm	10–60 cm
Texture		sandy loam	
Colour		brown	
pH (1:5 CaCl ₂)		5.2	
Organic carbon	%	1.3	
Nitrate N	ppm	18	6
Ammonium N	ppm	1	1
Phosphorus (Colwell)	ppm	44	
Sulphur (MCP)	ppm	6	
Manganese (DTPA)	ppm	29.2	
Boron (CaCl ₂)	ppm	0.6	
Copper (DTPA)	ppm	0.4	
Iron (DTPA)	ppm	16	
Zinc (DTPA)	ppm	0.2	
CEC	meq/100g	7.13	
K base saturation	%	17.7	
Mg base saturation	%	13.3	
Ca base saturation	%	66.9	
Na base saturation	%	0.3	
Al base saturation	%	1.7	
Chloride	ppm	45	

Albus lupins, November 2022

Barellan pulse trial site, 31 August 2022

Rainfall

Table 26: Monthly rainfall for 2022 and long-term average (LTA, 1878–2021) at Barellan Post Office and total annual and growing season (GSR, April–October) rainfall.

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total	GSR
2022	163.4	9.2	83.2	63.5	79.0	22.2	27.9	80.7	76.3	107.0	81.3	14.0	807.7	456.6
LTA	38.3	34.3	37.9	34.6	37.6	40.3	36.7	38.1	35.1	42.9	34.3	31.7	441.6	265.3

Crop sequence and key management dates

Crop sequence			Site management		
Year	Crop	Cultivar	Activity	Date	Comments
2021	Wheat	Beckom [◊]	Sowing	6 May	All trials
2020	Wheat	Beckom [◊]	Harvest	20 December 2022	Variety screen trial (except chickpeas)
2019	Canola	InVigor T 4510			Rhizobia trial
2018	Barley	La Trobe [◊]			Phosphorus management trial
2017	Wheat	Beckom [◊]		2 January 2023	Variety screen trial – chickpeas

Managing N fixation in pulses

Barellan 2022

Key findings

- The soil was a brown sandy loam with pH_{Ca} 5.2, Colwell phosphorus 44 ppm and total nitrogen (0–60 cm) 52.9 kg N/ha. The pulse crop grown was lupins in 2016.
- The addition of 40 kg/ha of nitrogen at sowing (broadcast and incorporated by sowing, IBS) increased the early vigour of lentils (as measured through NDVI on 2 and 31 August) but had no effect on the vigour of field peas.
- Acid tolerant rhizobia resulted in improved nodulation compared to both standard peat and nil inoculant treatments in lentils. In the field peas, both the acid tolerant rhizobia and standard peat had better nodulation than the nil inoculant treatment.
- There was no effect of inoculant treatment or N application on grain yield of lentils. Field pea grain yield was higher in both the standard peat and acid tolerant rhizobia treatments than in the uninoculated treatment. The addition of nitrogen at sowing also increased field pea yield.

Trial details

Table 33: Trial management and treatments applied at Barellan in 2022.

Management	
Pre-sow herbicides	3 May: glyphosate 450 @ 1.5 L/ha + Reflex® (240 g/L fomesafen) @ 1 L/ha
Sowing date	6 May
Starter fertiliser	MAP @ 80 kg/ha (phosphorus 21.9%, nitrogen 10%, sulphur 1.5%, calcium 1.6%)
Sowing rate	Calculated for each species and variety based on seed size. Lentil target 100 plants/m ² , field pea target 40 plants/m ²
Fungicide	Due to multiple trial species on one site, fungicide application was off-label. Contact trial manager for more information
Insecticide	11 October: Transform (500 g/kg sulfoxaflor) @ 50 g/ha + Trojan® (150 g/L gamma-cyhalothrin) @ 30 mL/ha + wetter 1000 @ 0.2%
Harvest date	20 December
Treatments	
Species, variety	Lentil, PBA Hallmark XT [®] Field pea, Sturt [®]
Rhizobia inoculant	Nil Standard peat Acid tolerant peat
N rate (applied as urea IBS)	0 kg N/ha 40 kg N/ha

Results

Lentils

Table 34: Effect of nitrogen and inoculation on vigour (NDVI), nodulation score* (1 September), grain yield and seed weight of lentils at Barellan in 2022.

Treatment	NDVI – 2 August	NDVI – 31 August	Nodule score*	Grain yield (t/ha)
Nitrogen				
0N	0.39	0.55	2.5	2.6
40N	0.43	0.62	2.6	2.7
Mean	0.41	0.59	2.5	2.7
I.s.d. (P=0.05)	0.016	0.054	ns	ns
Inoculation				
Nil	0.41	0.57	1.8	2.5
Standard Peat	0.40	0.57	2.3	2.7
Acid Tolerant	0.43	0.62	3.5	2.7
Mean	0.41	0.59	2.5	2.7
I.s.d. (P=0.05)	ns	ns	0.55	ns

* Nodulation scores 0 to 8, where 0 = no nodules and 8 = extremely abundant. A score of 4 is considered adequate.

Source: Dr Ron Yates, Department of Agriculture and Food WA.

Field peas

Table 35: Effect of nitrogen and inoculation on vigour (NDVI), nodulation score* (1 September), grain yield and seed weight of field peas at Barellan in 2022.

Treatment	NDVI – 2 August	NDVI – 31 August	Nodule score*	Grain yield (t/ha)
Nitrogen				
0N	0.64	0.69	3.5	2.8
40N	0.66	0.70	3.8	3.1
Mean	0.65	0.69	3.6	2.95
I.s.d. (P=0.05)	ns	ns	ns	0.05
Inoculation				
Nil	0.65	0.69	3.1	2.7
Standard Peat	0.63	0.69	3.7	3.1
Acid Tolerant	0.66	0.70	4.1	3.0
Mean	0.65	0.69	3.6	2.95
I.s.d. (P=0.05)	ns	ns	0.42	0.284

* Nodulation scores 0 to 8, where 0 = no nodules and 8 = extremely abundant. A score of 4 is considered adequate.

Source: Dr Ron Yates, Department of Agriculture and Food WA.