VARIETIES 99

Canola Variety Development

Laura Maher and Wayne Burton Department of Primary Industries – Horsham

Summary

Limited results will be available from 2004 due to the dry season.

Review long term data, and try new varieties in conjunction with proven varieties.

Six new varieties will be marketed in Victoria in 2005.

2004 was a difficult season for most. The hot dry weather during flowering and pod filling periods reduced yields and oil contents.

Frost was also an issue to farmers in the Wimmera. Given the season there will be limited results available, and as always we recommend that new varieties are chosen in conjunction with proven varieties.

New Varieties for 2005

Six new varieties will be marketed in Victoria in 2005.

Early-Maturing Varieties

Dovuro seeds will market an early-mid maturing variety called ^{AG}Comet (Breeders code: AGC103), developed by Ag-Seed Research. ^{AG}Comet is suited to the medium to low rainfall areas and has good early vigour. The oil content of ^{AG}Comet is slightly higher than ^{AG}Outback, and it has a provisional blackleg rating of 7.5.

Pacific Seeds will market an early-mid maturing variety called Kimberley (Breeders code: RGAS0205), developed by Canola Breeders International. Kimberley has high yield potential with moderate oil and high protein, and has a provisional blackleg rating of 6.5.

PlantTech Pty Ltd and Graintrust will market an early maturing triazine tolerant variety called Trilogy (Breeders code: CBWA003), developed by CBWA. Trilogy is widely adapted to lower rainfall regions (200-400mm) or later planting in medium rainfall regions. Trilogy has a provisional blackleg rating of 7.0 but is derived from a cross between Surpass400 and Karoo and may contain *sylvestris* resistance.

Mid-Maturing Varieties

PlantTech Pty Ltd will market a mid-maturing variety called Skipton (Breeders code: BLN2677), developed by NSW DPI. Skipton is similar to ^{AV}Sapphire and has very good early vigour, high yield, high oil and high protein. The provisional blackleg rating is 6.5.

Pacific Seeds will release and market a mid-late maturing triazine tolerant variety called ThunderTT (Breeders code:T2062). ThunderTT is suited to medium to high rainfall zones. The provisional blackleg rating will not be available until the release of 2005 ratings in March this year.

Pacific Seeds will also release and market a mid-late maturing Clearfield variety called RocketCL (Breeders code: J9747). RocketCL is suited to the higher rainfall zones in Victoria and has been tested against both conventional and *sylvestris*

100 VARIETIES

attacking blackleg strains and appears to show good resistance against both. The official provisional blackleg rating will not be available until the release of 2005 ratings in March this year.

The provisional ratings for all these varieties may change and the official 2005 ratings for all canola varieties will be released in March 2005. Given the difficulty of the season, the performance of these varieties is hard to judge, and they will all be reevaluated during 2005.

In 2005 there will be a total of 30 varieties marketed in Victoria (Table 1). Remember to match your variety with maturity and average rainfall for your region, and the production system required.

Issues for 2004

Breakdown of Blackleg resistance

Not many crops with *sylvestris* resistance were grown this year, and the overall incidence of blackleg across the state was low. The breakdown of the resistance in varieties with resistance derived from *Brassica sylvestris* will remain an issue. Most varieties marketed this year have polygenic blackleg resistance and so grower retained seed from varieties with *sylvestris* resistance will create the greatest risk of heavy losses.

Farmers in Victoria are advised to:

- Be extremely cautious when growing canola varieties with the *Brassica sylvestris* single major gene resistance. Varieties containing this major gene resistance include: Tribune, Hyola60, Hyola43, Surpass400, Surpass501TT, Surpass603CL, Surpass402CL and Surpass404CL. Trilogy is also derived from a cross between Surpass400 and Karoo and may contain sylvestris resistance.
- The risk of large yield losses are very high when growing *sylvestris* based varieties. The destruction of canola crops on the Eyre Peninsula in 2003 should be seen as a warning for the rest of Australia.
- The speed of the resistance breakdown on the Eyre Peninsula suggests that farmers will NOT get a warning in the year before the breakdown occurs.
- Fungicides will reduce disease severity in *sylvestris* based varieties but severe yield losses will still occur.
- All other canola varieties can still be grown as they appear to be resistant to these strains of the fungus and their blackleg ratings have not changed.

VARIETIES 101

Table 1. Canola varieties being marketed in Victoria 2005

	Year of	f Type	Maturity	Blackleg	resist'n	Oil ³	Protein	
Variety	release			Type ¹	Rating ²			
Pioneer®44C11	2004	Conventional	Early	Poly	6.5	Moderate	Moderate	
Kimberly	2004	Conventional	Early	Poly	6.5 P	Moderate to High	Moderate	
AG Emblem	1999	Conventional	Early	Poly	7.0	Moderate	Moderate	
AG Outback	2001	Conventional	Early	Poly	5.5	Moderate	Moderate	
^{AG} Spectrum	2004	Conventional	Early-mid	Poly	7.0	High	High	
Pioneer®45C05	2003	Conventional	Early-mid	Poly	7.0	Moderate	Moderate	
^{AG} Comet	2005	Conventional	Early-mid	Poly	7.5	Moderate	Moderate	
Rivette	2002	Conventional	Early-mid	Poly	5.5	High	High	
AV Sapphire	2003	Conventional	Mid	Poly	7.0	Very High	High	
Rainbow	1993	Conventional	Mid	Poly	5.5	Moderate	Moderate	
Pioneer®46C04	2003	Conventional	Mid	Poly	7.0	Moderate	Moderate	
Hyola 61	2004	Conventional Hybrid	Mid	Poly	7.5 P	High	High	
Skipton	2004	Conventional	Mid	Poly	6.5 P	Very High	High	
Lantern	2002	Conventional	Mid	Poly	6.0	Very High	High	
Pioneer®44C73(C	2001	Clearfield	Early-mid	Poly	5.0	Moderate	Moderate	
L)								
Pioneer®45C75(C	2001	Clearfield	Early-mid	Poly	6.0	Moderate	High	
L)								
Pioneer®	2004	Clearfield	Mid-late	Poly	7.0 p	Moderate	Moderate	
46C76(CL)	2005	C1 C 11	NC 11 .	D 1 /C 1	NT 4	NTA	NTA	
Rocket (CL)	2005	Clearfield	Mid-late	Poly/Syl		NA	NA	
ATR Eyre ATR Stubby	2002	Triazine Tolerant	Early	Poly	4.5	High	High	
	2004	Triazine Tolerant	Early	Poly	6.5	Moderate	Moderate	
Trilogy	2005	Triazine Tolerant	Early	Unknow n	7.0 P	Moderate	Moderate	
Trigold	2005	Triazine Tolerant	Early	Poly	4.0 P	High	High	
ATR Hyden	2001	Triazine Tolerant	Early-mid	Poly	6.5	Moderate	Moderate	
ATR Beacon	2002	Triazine Tolerant	Early-mid	Poly	6.0	High	High	
Tornado TT	2004	Triazine Tolerant	Mid	Poly	7.5	High	Moderate	
Thunder TT	2005	Triazine Tolerant	Mid-late	Poly	NA	NA	NA	
TI1-Pinnacle	1997	Triazine Tolerant	Mid-late	Poly	5.5	Moderate	Moderate	
				- J			to High	
ATR Grace	2001	Triazine Tolerant	Mid-late	Poly	6.5	High	High	
MC201	2004	Specialty	Mid-late	Poly	6.0 P	Moderate	Moderate	
MC202	2004	Specialty	Mid-late	Poly	6.5 P	Moderate	Moderate	

- 1. Poly = polygenic resistance, Syl = has major gene resistance derived from *Brassica* sylvestris
- 2. 2004 blackleg ratings. The official ratings for 2005 will be published by the Canola Association of Australia (CAA), and will be available in March 2005. Check the CAA website http://www.canolaaustralia.com for the latest information on ratings. The ratings are determined from nurseries conducted around Australia by Departments of Agriculture and private breeding companies. Results statistically analysed. Varieties with insufficient data are marked P for provisional.
- 3. Oil content of varieties can vary considerably due to environmental conditions, from year to year and from site to site within a year.

Table 2. Canola variety grain yields by region over three years in Victoria

	Mallee			Wimmera			Central			North 1	East		Western District		
Variety	2001	2003	2004	2001	2003	2004	2001	2003	2004	2001	2003	2004	2001	2003	2004
Early	Percentage of ^{AG} Outback														
AGOutback Yield(t/ha)	1.10	1.34	0.50	2.20	1.69	2.23	0.58	1.32	0.61	2.59	2.52				
AGEmblem	99	84		98	98		140	71		98	92				
^{AG} Outback	100	100	100	100	100	100	100	100	100	100	100				
AGComet			73			103			109						
Kimberley			95			73			89						
Pioneer®44C73 (CL)	93	83	83	103	120	79	138	94	100	99	100				
Pioneer®44C11		102	99		114	76			134						
Rivette	98	93	94	99	109	95	120	78	137	104	96				
Sites*	4	4	1	2	2	1	1	3	1	3	2				
Mid	Percen	tage of	^{AV} Sapph	ire											
AV Sapphire Yield(t/ha)				1.86	1.91	1.58	0.79		0.85	2.36	2.37	1.82	3.56	3.66	
^{AV} Sapphire				100	100	100	100		100	100	100	100	100	100	u
^{AG} Spectrum					117	107		ion	113		106	101		98	sio
Hyola 61					105	103		ısn	114		101	104		97	Ju
Lantern				90	100	109	109	inci	91	99	105	111	92	99	inα
MC201 (HOLL)					88	71		or	66		89	84		97	c_{or}
MC202 (HOLL)					95	84		le f	82		97	108		94	le j
Pioneer®45C05				104	116	80	111	iab	61	101	98	84	98	94	ab
Pioneer®45C75 (CL)					110	85		'ar	131		103	128		88	arı
Pioneer®46C76 (CL)				101	90	108	109	1 00	97	102		126			0 1
Pioneer®46C04				101	112	102	109	Results too variable for inclusion	91	102	106	117		110	Results too variable for inclusion
Rainbow				89	106	100	110	suli	100	104	96	113	95	97	ults
Rocket CL								Re,							Sesi
Skipton						109			100			127			K
Sites*				2	3	2	1		1	3	3	1	2	2	

	Mallee			Wimmera			Central			North East			Western District		
Variety	2001	2003	2004	2001	2003	2004	2001	2003	2004	2001	2003	2004	2001	2003	2004
TT Mid	Percentage of ATR Grace														
ATRGrace Yield(t/ha)	1.27			2.29	1.68	1.34		1.77	0.81	2.72	2.39	1.38	3.22	3.12	1.05
ATR Beacon	99			97	100	96		96	112	89	97	118	94	105	98
Alk Grace	100			100	100	100		100	100	100	100	100	100	100	100
ATR Hyden	99			86	94	91		80	101	94	94	128	91	105	96
TI1 Pinnacle	92			78	93			104		78	90		90	100	
Tornado TT						74			83			117			97
Thunder TT												116			
Sites*	3			2	2	2		1	1	2	2	1	1	3	1
TT Early	Percer	Percentage of ATREyre													
ATREyre Yield (t/ha)	1.15	1.01		1.55		1.42				2.27			2.72		
^{ATR} Eyre	100	100	too le	100		100				100			100		
ATR Stubby		121	ts t			145									
Trigold			esults to variable			113									
Trilogy			Results variab			128									
Sites*	3	4	,	2		1				2			3		

Disclaimer

This publication may be of assistance to you but the State of Victoria and its employees do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequence which may arise from you relying on any information in this publication.

^{*} Number of Victorian Stage 4 trials run by the DPI Crop Evaluation Unit (CL) – Clearfield (Imidazalinone tolerant) (HOLL) – High Oleic, Low Linolenic specialty oil