Matching Nitrogen to Variety

David Scholz, Manager – Agronomist, Elders - Scholz Rural

Aim

To evaluate yield and quality response of existing wheat varieties when treated at different nitrogen rates. Aiming to maximise nitrogen use efficiency by matching inputs to variety.

Trial Details	
Property	Wenballa Farm, east of Dalwallinu
Plot size & replication	12m x 2.5m x 3 replications
Soil type	Red loam
Soil pH (CaCl ₂)	5.6
EC	0.038 dS/m
Paddock rotation	2009 wheat, 2010 wheat, 2011 wheat
Variety	As per protocol
Seeding date	7/6/12
Seeding rate	75 kg/ha
Fertiliser	7/6/12: 75 kg/ha MAPSZC banded, 100 kg/ha SOP spread IBS
Herbicides	7/6/12: 1.5 L/ha Roundup, 2.5 L/ha Boxer Gold, 1.0 L/ha Trifluralin, 1 L/ha Chlorpyriphos
Herbicides	11/7/12: 25 g/ha Monza, 2% v/v DC Trate
Growing Season Rainfall	133mm

Trial Design

Table 1: Treatment list showing 3 variety x 4 nitrogen rates. 4WAE = 4 weeks after emergence.

Treatment	Treatment	N rate	N top up ra	ate 4WAE	N top up ra	ate 9 WAE
1	Mace	0 kg/ha				
2	Mace	25 kg/ha	UAN	30 L/ha	UAN	30 L/ha
3	Mace	50 kg/ha	UAN	60 L/ha	UAN	60 L/ha
4	Mace	75 kg/ha	UAN	90 L/ha	UAN	90 L/ha
5	Wyalkatchem	0 kg/ha				
6	Wyalkatchem	25 kg/ha	UAN	30 L/ha	UAN	30 L/ha
7	Wyalkatchem	50 kg/ha	UAN	60 L/ha	UAN	60 L/ha
8	Wyalkatchem	75 kg/ha	UAN	90 L/ha	UAN	90 L/ha
9	Magenta	0 kg/ha				
10	Magenta	25 kg/ha	UAN	30 L/ha	UAN	30 L/ha
11	Magenta	50 kg/ha	UAN	60 L/ha	UAN	60 L/ha
12	Magenta	75 kg/ha	UAN	90 L/ha	UAN	90 L/ha

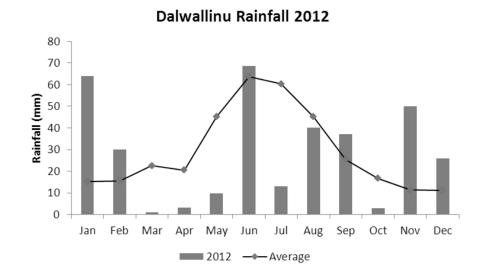


Figure 1: Dalwallinu rainfall calendar year 2012 compared to average. Results

Treatment	Treatment	Crop Biomass 16/8/12	Head Count (/m ²)	Grain Yield
No.			19/9/12	(t/ha)
1	Mace ON	80 d	102 abc	1.354 a
3	Mace 50N	85 cd	101 abc	1.316 ab
4	Mace 75N	92 ab	113 ab	1.307 abc
5	Wyalkatchem 0N	80 d	91 c	1.013 a-d
6	Wyalkatchem 25N	82c d	96 bc	0.985 bcd
7	Wyalkatchem 50N	83 cd	90 c	0.739 d
8	Wyalkatchem 75N	85 cd	89 c	0.767 d
9	Magenta ON	82 cd	112 ab	0.928 d
10	Magenta 25N	87 bc	118 a	0.966 cd
11	Magenta 50N	87 bc	115 ab	0.966 cd
12	Magenta 75N	93 a	121 a	1.032 a-d
	LSD (P=0.05) CV	5.8 4.0	20.7 11.8	0.3 19.8

 Table 2: Biomass, head counts and final grain yield for varieties. Different letters indicate a significant result.

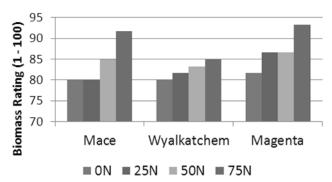


Figure 2: Wheat variety response in biomass to N application, observations as at 16th August 2012.

Tr	eatment	Protein	Specific Weight (kg/hL)	Screeings (%)
1	MON	11.6 f	74.4 a	3.3 с
2	M25	13.1 e	74.5 a	4.5 abc
3	M50N	13.3 de	74.7 a	3.9 bc
4	M75N	13.9 bcd	73.7 a	5.0 abc
5	WON	12.0 f	73.4 a	3.5 с
6	W25N	13.3 de	71.1 b	6.1 ab
7	W50N	13.8 b-е	70.9 b	6.2 ab
8	W75N	14.4 ab	71.4 b	6.4 a
9	MAGON	12.2 f	73.9 a	3.9 bc
10	MAG25N	13.5 cde	74.3 a	3.2 с
11	MAG50N	14.1 abc	73.3 a	5.3 abc
12	MAG75N	14.6 a	73.7 a	4.6 abc

Table 3: Quality data for the treatments, bold indicates a higher pay grade, italics lower (std APW2).

The analysis of crop biomass was done on the 16th August and shows a significant jump in biomass for Mace and Magenta to the top rate of N. Wyalkatchem trends upward but is not significant. This did not reflect through to head count or yield. The yield numbers had a very high CV% (lots of variability) as frost was recorded by Kalyx throughout the plots therefore unfortunately not much can be taken from the yield.

Grain quality was as expected in a tough finish at the site. All varieties showed an increase in protein with applied nitrogen. Wyalkatchem grain quality deteriorated significantly with applied nitrogen as screenings increased and hectolitre weight dropped compared to the control.

Economic Analysis

Table 4: Gross Margins using base variable costs of \$207/ha and Gross Revenue APW \$300/t, with grade spreads as at15/1/13. Sulphate of Potash NOT included @ \$80/ha (not typical farmer practice).UAN @ \$1.35/kg.

Treatment No.	Treatment & Bin Grade	N rate	Gross margin/ha	
1	Mace (H2)	0 kg/ha	\$207.32	
2	Mace (H1)	25 kg/ha	\$86.11	
3	Mace (H1)	50 kg/ha	\$134.78	
4	Mace (AUH2)	75 kg/ha	\$83.85	
5	Wyalkatchem (AGP1)	0 kg/ha	\$66.51	
6	Wyalkatchem (AGP1)	25 kg/ha	\$25.20	
7	Wyalkatchem (AGP1)	50 kg/ha	-\$75.00	
8	Wyalkatchem (AGP1)	75 kg/ha	-\$101.16	
9	Magenta (AGP1)	0 kg/ha	\$43.56	
10	Magenta (H1)	25 kg/ha	\$59.68	
11	Magenta (AGP1)	50 kg/ha	-\$13.68	
12	Magenta (AGP1)	75 kg/ha	-\$29.61	

Comments

Mace was the highest yielder with the best grain quality and being a hard variety gave the best gross margin. All other varieties didn't make their base grade of APW2 with the exception of one Magenta treatment. Adding nitrogen had a negative impact on yields and therefore gross margins with the exception of Magenta 25N, which was able to scrape into a higher bin grade. This trial was impacted by drought stress and frost which increased variability (CV 19.8%) which does limit the conclusions we can take from this trial. The biomass trends do give us a picture of what potentially might have happened given a better finish to the season therefore further trial work is needed. All three varieties do appear to react differently to nitrogen inputs however we weren't able to show this through to yield.

Acknowledgements

Kalyx for managing the trial, Summit for their help and advice.

Paper reviewed by: Eddy Pol, Summit Fertilisers

Contact David Scholz, Elders – Scholz Rural (08) 9661 2000