

# Conserving soil moisture, does stubble or a fallow help on a red loam?

Dr Yvette Oliver, Research Scientist, CSIRO

Nadine Hollamby, Project Coordinator, Liebe Group



## Aim

To determine if various farm management techniques improve the storage of out-of-season rainfall and whether this leads to improvements in crop growth and/or yield.

## Background

After a decade of variable rainfall, in particular sporadic winter and summer rainfall, Liebe growers wanted a better understanding on how stubble management over the summer affects stored soil water, crop establishment, growth and crop yield. Storing more rainfall in the soils, compared to losing this rainfall to evaporation or weeds, can potentially increase yields by 0.3-0.5 t/ha (Oliver, 2011) and reduce the risk from drought stress. Therefore it is important to understand how much water your soils can hold (the plant available water capacity - PAWC), how much water can be stored over the summer and how it is affected by summer stubble cover and rainfall distribution.

Fallow is also being reconsidered as a management tool with potential benefits including early sowing, weed control, using extra stored soil moisture to reduce 'drought' risk, and nitrogen mineralisation.

The type of fallow used in this trial was a short 'opportunistic' fallow, where the crop was planted but then sprayed out in August. This is opposed to a strategic fallow, where no crop is planted. This trial was set up in 2010, with crop yields being recorded in 2011 and 2012.

## Trial Details

|                                    |                                                                                                                                                                                          |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Property</b>                    | Keith Carter, east of Wubin                                                                                                                                                              |
| <b>Plot size &amp; replication</b> | 15m x 300m, not replicated                                                                                                                                                               |
| <b>Soil type</b>                   | Red loamy duplex (York gum)                                                                                                                                                              |
| <b>Soil pH (CaCl<sub>2</sub>)</b>  | 0-10cm: 4.8      10-40cm: 4.8-5.1      40-100cm: 6.4-7.8                                                                                                                                 |
| <b>EC</b>                          | Non saline (0.15-0.32 dS/m)                                                                                                                                                              |
| <b>Sowing date</b>                 | 5/5/12                                                                                                                                                                                   |
| <b>Seeding rate</b>                | 44 kg/ha Scope barley                                                                                                                                                                    |
| <b>Fertiliser</b>                  | 5/5/12: 70 kg/ha Agstar Extra, 65 L/ha Flexi-N banded                                                                                                                                    |
| <b>Paddock rotation</b>            | 2009 field peas, 2010 wheat, 2011 wheat                                                                                                                                                  |
| <b>Herbicide</b>                   | 15/2/12: 1.2 L/ha Roundup, 0.5 L/ha Ester 800, 0.2 L/ha Garlon, 0.03 L/ha Atrazine<br>7/5/12: 1.8 L/ha Trifluralin, 150 g/ha Metribuzin, 0.5 L/ha Sprayseed<br>3/7/12: 0.6 L/ha Intervix |
| <b>Growing season rainfall</b>     | 126mm                                                                                                                                                                                    |

**Table 1:** Trial treatments.

| <b>Treatment</b> | <b>Details</b>                                                                                                              | <b>Date imposed</b> |
|------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------|
| Fallow           | Wheat crop sown then sprayed out before anthesis using a knockdown herbicide.                                               | August 2011         |
| Old fallow       | Wheat crop was sown then sprayed out in August 2010, thus the 2012 crop is its second wheat since a fallow was imposed.     | August 2010         |
| Standing stubble | Stubble harvested at 200mm and spread (normal district practice).                                                           | December 2010/2011  |
| Flat stubble     | Stubble flattened by dragging a chain between two vehicles. This practice was once used in district but is now rarely seen. | January 2010        |

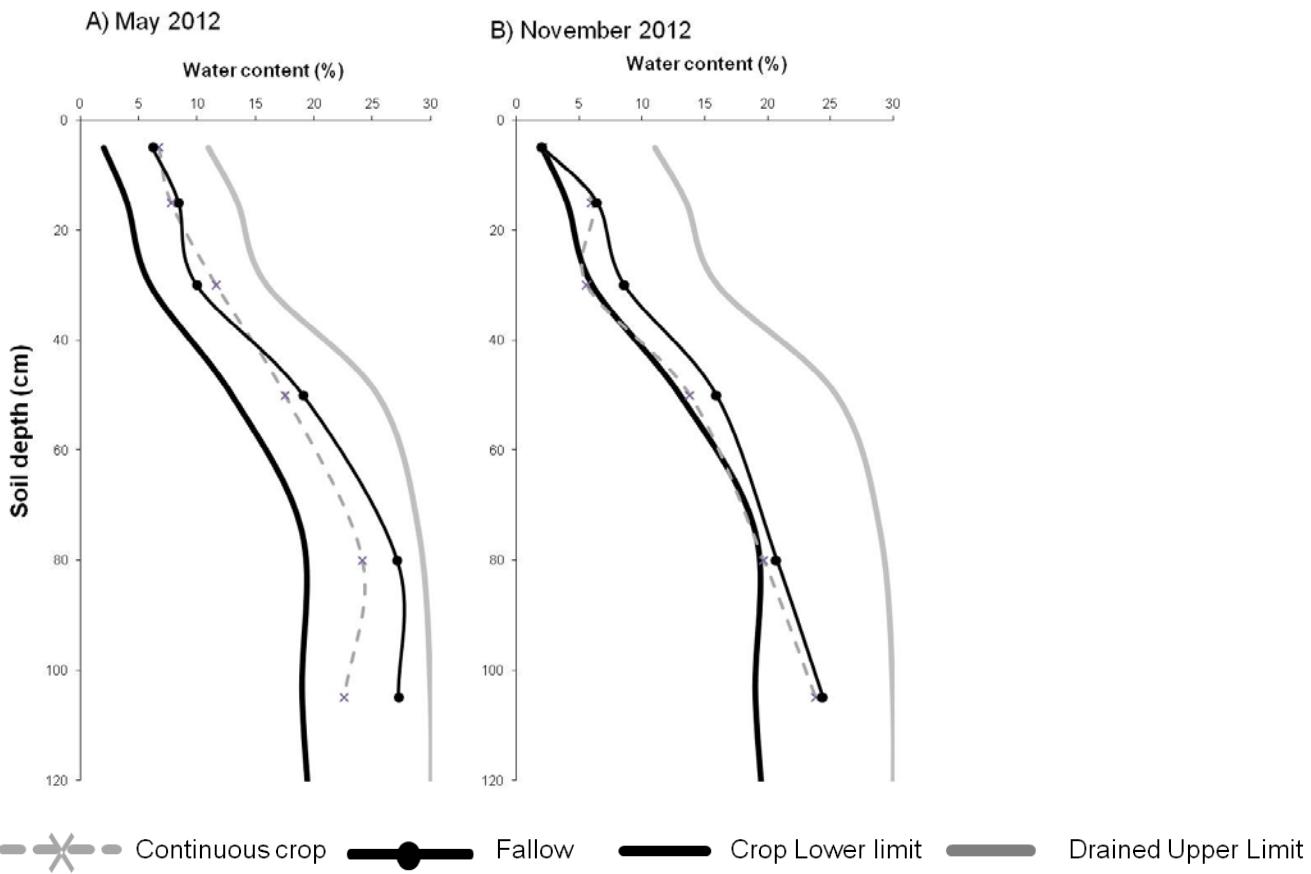
## Results

**Table 2:** Barley yield and quality after fallow or flattening stubble.

| Treatment                             | Yield (t/ha) | % NN control* | Protein % | Hectolitre weight (g/hL) |
|---------------------------------------|--------------|---------------|-----------|--------------------------|
| Continuous crop with standing stubble | 2.0          | 100           | 12.7      | 63                       |
| Old fallow                            | 2.1          | 105           | 13.5      | 65                       |
| Flattened stubble                     | 2.0          | 104           | 13.0      | 65                       |
| Continuous crop with standing stubble | 1.9          | 100           | 12.8      | 65                       |
| Fallow                                | 2.1          | 109           | 12.6      | 67                       |

\*Continuous crop with standing stubble is used as the control treatment in this trial. Different treatments (ie Fallow) are compared to the nearest continuous cropped strip, known as nearest neighbour control.

The fallow plot yielded 0.2 t/ha more than the continuously cropped strip alongside it. There also appears to be a second year yield benefit from the old fallow plot which was fallowed in 2010 and cropped in 2011 and 2012, which yielded 0.1 t/ha more than the continuously cropped strip alongside it. The trial was not replicated and thus confidence in this result is reduced, yield benefit may be due to natural variations such as soil type.


### Nitrogen

Mineralisation of nitrogen over the fallow period has resulted in an extra 21 kg/ha of nitrogen being available according to the March soil test results and this extra nitrogen could have contributed to the high yields seen after fallow (Table 3). An additional 37 units (kg/ha) of N were added at seeding as Agstar Extra and Flexi-N, making total N in the soil at seeding 177 units. This is sufficient nitrogen to support a 3.4 t/ha or better crop based on the assumption that 45 kg/ha of N is required per tonne of grain. However, the amount of nitrogen available to the plant at any one time depends on where nitrogen is distributed down the soil profile and root growth.

At harvest, all treatments had ~44 kg N/ha remaining. Majority of this remaining nitrogen was in the 60-90cm layer (14 kg/ha for all plots). The 10-20cm layer has only 5 kg/ha remaining in November (data not presented).

**Table 3:** Total nitrogen (ammonium and nitrate) in top 90cm of soil on 1<sup>st</sup> March 2012.

| Treatment        | Nitrogen in top 0-10cm | Nitrogen in subsoil 10-90cm. | Total Nitrogen (kg/ha) |
|------------------|------------------------|------------------------------|------------------------|
| Standing stubble | 60                     | 75                           | 135                    |
| Fallow           | 74                     | 82                           | 156                    |
| Old fallow       | 70                     | 50                           | 120                    |



**Figure 1:** Soil moisture on red loamy duplex east of Wubin in May (A) and after harvest (B).

Imposing a fallow by spraying out the crop in August resulted in some extra water being saved deep down the soil profile which is the illustrated 'bulge' starting at ~50cm in Figure 1a. This extra water could have contributed to the extra yield seen in the fallow plot. By the time the crop was harvested (Figure 1b) most of the water in the soil had been used up, as expected in this climate. Although the graph does indicate that some water remains in the fallow plot, the reason for which is unknown.

The fallow showed excellent water use efficiency of 24 kg/ha/mm. The continuous crop also showed good water use efficiency by producing 21 kg/ha/mm of barley. This illustrates how efficient early sown crop with good weed control and adequate nutrition can be. (See appendix).

### Comments

- Overall imposing a fallow allowed for a small amount of extra water to be stored in the soil and a small amount of extra nitrogen. As a result there was a small yield gain of 0.2 t/ha in 2012.
- In this trial the fallow treatment was planted then sprayed out in August to replicate what is known as an 'opportunistic' fallow compared to a 'strategic' fallow where no crop is planted for 18 months. 18 month fallows would have different results to the ones reported here.
- Other benefits of fallow that were not recorded in this trial but could have contributed to the yield gain are improved weed control, disease breaks and opportunity for early sowing.

### Acknowledgements

GRDC for funding the trial and Keith Carter & Co for hosting the trial.

**Paper reviewed by:** Chris O'Callaghan, Liebe Group

### References

Oliver YM. *Soil water under the Liebe summer stubble management trials*. Liebe Group Spring Field Day 2011.

**Contact**

Nadine Hollamby, Liebe Group  
nadine@liebegroup.org.au  
(08) 9661 0570

**Appendix**

Calculation used for water use efficiency: grain yield kg/ha / (((Jan + Feb rain x 0.33) + (March rain x 0.5) + (April to October rain)) x 0.66 for evaporation) = Water use efficiency kg/ha/mm