RIVERINE PLAINS INC – RESEARCH AT WORK

Barley maximum yield experiment

Author: John Sykes

Contact No: 02 6023 1666

Organisation: John Sykes Rural Consulting

Key messages:

• Barley responded to inputs of nitrogen (N) and fungicide in 2006 and 2007.

• 20-40 kg/ha of N was required to maximise yield.

• Fungicide response was independent of N application.

Aim:

To assess the level of input required to maximise the yields of barley grown after wheat.

Method:

A replicated experiment was established using differing levels of post emergent N and fungicide to assess yield.

Location: Balldale

Growing Season Rainfall: Annual: 392 mm (avg 504 mm) GSR: 221 mm (avg 319 mm)

Soil:

Type: Red Chromosol

pH (H₂0): 4.8

P (Colwell): 37 mg/kg Deep Soil N: 86 kg/ha Sowing Information: Sowing date: 23/5/2007 Fertiliser: 90 kg/ha MAP Row Spacing: 180 mm Paddock History:

2006 – Wheat 2005 – Wheat 2004 – Canola Variety: Baudin

Plot Size: 1.5 m x16 m

Replicates: 4

Results:

Table 2: Summary of 2007 yield, protein, screening and retention, gross margin and 2005 to 2007 yield

Treatment Description	Yield	Protein ⁵	Retention ⁶	Gross	Yield ⁸ 2005 to
	(t/ha)	(%)	(%)	Margin ⁷	2007 as % of
				(\$/ha)	N40 yield
Nil 0N ¹	1.0	11	99	182	69
Nil 20N ¹	1.3	11	98	277	88
Nil 40N ¹	1.7	12	96	380	100
Nil 60 N ¹	1.6	15	82	321	99
Nil 80N ¹	1.5	15	73	262	103
Nil 100N ¹	1.3	15	59	177	100
Nil 120N ¹	1.6	16	45	254	104
SD^2 , $Z31 + Z39^3 0 N$	1.3	10	97	264	82
SD ² Z31 + Z39 ³ 20 N	1.7	11	97	380	105
SD ² , Z31+ Z39 ³ 40 N	2.1	11	97	512	125
SD ² , Z31+ Z39 ³ 60 N	1.6	15	64	327	115
SD ² , Z31+ Z39 ³ 80 N	1.6	16	60	302	129
SD ² , Z31+ Z39 ³ 100 N	1.5	17	38	245	112
SD ² , Z31+ Z39 ³ 120 N	1.4	16	46	164	110
SD ² , Z31 40 N ⁴	1.9	11	95	453	113
SD ² , Z39 40 N ⁴	1.9	11	90	445	123
SD ² , Z45 40 N ⁴	1.9	10	94	455	105
SD ² , Z31 80 N ⁴	1.6	16	66	293	108
SD ² , Z39 80 N ⁴	1.6	16	47	319	106
SD ² , Z45 80 N ⁴	1.7	16	74	346	103

Treatment Description	Yield	Protein ⁵	Retention ⁶	Gross	Yield ⁸ 2005 to
	(t/ha)	(%)	(%)	Margin ⁷	2007 as % of
				(\$/ha)	N40 yield
SD ² , FolZ31 80 N ⁴	1.7	15	91	343	118
SD ² , FolZ31+ Z39, 40N	1.9	11	95	440	122
SD ² , FolZ31+ FolZ39, 80N	1.7	16	55	317	113
SD ² , FolZ39, 80N	1.6	15	48	308	108
SD ² , OpusZ31+ Z39, 40N	1.8	12	98	409	123
SD ² , OpusZ31+ OpusZ39, 80N	1.7	15	78	307	114
SD ² , OpusZ39, 40N	1.9	11	92	438	112
SD ² , OpusZ31, 40N	1.9	12	88	463	108
Average	1.6				
LSD	0.1				
CV	14%				

Z – Zadok's Growth Stage. 1- Rate of post emergent N applied at Z23. 2 – SD – Seed Dressing as 1.5 L/t of Baytan. 3 – Two applications of 500 ml/ha of 125 g/L Triadimefon fungicide at Z30 and Z39. 4- One application of 1 L/ha of 125 g/L Triadimefon fungicide at Z30, Z39 or Z45. 5 & 6- Protein and retention one sample from rep 4 only. 7- Gross Margin (whole \$/ha) based on \$360 /t (del local silo) and N @ \$1.50 /kg delivered. 8 - Average 2005 to 2007 yield expressed as a % of the N40 yield of 2.2 t/ha.

Observations and comments:

- N increased the yield to 40 kg/ha. Yield decreased with additional N applications.
- Fungicides increased yield in the absence of additional N. The response was relatively uniform to 40 kg/ha of N at 0.3 t/ha. Above 40 kg/ha of N there was no response to either N or fungicide.
- No N resulted in good protein and excellent retention for the production of malting barley. 40 kg N/ha resulted in protein levels and grain retentions that are suitable for malting.
- A single application of fungicide at about Z31 gave the best results.
- Using 40 kg/ha of N and one fungicide spray (applied by ground) gave the highest gross margin.
- A preliminary extension program for improved growing barley was begun in 2007. There were no results due to the dry conditions. N or fungicide was not used by the cooperating farmers. It will be run again in 2008 and 2009.

Sponsors:

The Grains Research and Development Corporation, Charles Cay and Susie Cay.