## 4.4 PHOSPHORUS AND TRACE ELEMENT FOR MAXIMUM WHEAT PRODUCTION IN THE HIGH RAINFALL ZONE – HAMILTON SITE

Researcher: Andrew Speirs ph: 0428 685 172 HiFert

Location: Hamilton Site Co-operator: SFS, John Herman's site

#### Aim:

To develop a phosphorus response curve for high rainfall production of white wheat as well as investigating the responsiveness of acid soils to zinc and or copper based products which showed promise in the 2000 trial at Streatham.

Annual Rainfall mm: 824mm Growing season rainfall: 597mm



Soil Type: Loam

Trial layout:

A fully randomised complete block design. Hamilton site 4 replicates, plot size 15 m, 10 treatments.

Paddock History:2001Wheat Kellalac2000Pasture

| Test   | Org. C<br>% | P <sup>1</sup><br>mg/kg | K<br>mg/kg | S<br>mg/kg | pH<br>H₂O          | pH<br>CaCl₂        | Cu<br>DTPA<br>mg/kg | Zn<br>DTPA<br>mg/kg |
|--------|-------------|-------------------------|------------|------------|--------------------|--------------------|---------------------|---------------------|
| Result | 4.1         | 19                      | 262        | 28.1       | 4.9                | 4.4                | 0.46                | 0.73                |
| Status | High        | Adeq                    | Adeq       | High       | Strongly<br>Acidic | Strongly<br>Acidic | Marg                | Marg                |

| Test   | CEC<br>meq/100<br>mg | Ca<br>% | Mg<br>% | Na<br>% | S<br>0-60 | SALT<br>dS/m | N<br>(kg/ha)<br>0-10 | N<br>(kg/ha)<br>0-60 |
|--------|----------------------|---------|---------|---------|-----------|--------------|----------------------|----------------------|
| Result | 12.1                 | 56.9    | 28.4    | 4.4     |           | 0.317        |                      | >250                 |
| Status |                      | Marg    | Elev    | Elev    | -         | Marg         |                      |                      |

<sup>1</sup>. P test is Olsen, Colwell 60 0 – 10 cm nitrate 176 and Ammonium 18 Phosphate buffering Index

## **Treatment Details:**

| Treatment | Sowing          | Pre Sowing | Nutrients applied (kg/ha) |    |     |      |     |  |  |  |
|-----------|-----------------|------------|---------------------------|----|-----|------|-----|--|--|--|
|           |                 |            | N                         | Р  | S   | Zn   | Cu  |  |  |  |
| 1         | Nil             |            | 0                         | 0  | 0   | 0    |     |  |  |  |
| 2         | DAPS            |            | 23                        | 25 | 17  | 0    |     |  |  |  |
| 3         | DAPS            | DAPS       | 32                        | 35 | 24  | 0    |     |  |  |  |
| 4         | DAPS            | DAPS       | 46                        | 50 | 34  | 0    |     |  |  |  |
| 5         | DAP Zinc 5%     |            | 23                        | 25 | 2.5 | 6.25 |     |  |  |  |
| 6         | DAPS            | ,          | 23                        | 25 | 17  | 4.4  |     |  |  |  |
| 7         | DAP Cu 2.5 %    |            | 23                        | 25 | 2.5 | 0    | 3.2 |  |  |  |
| 8         | DAP             |            | 23                        | 25 | 2.5 | 0    |     |  |  |  |
| 9         | DAP Cu/Zn 2.5 % |            | 23                        | 25 | 2.5 | 3.2  | 3.2 |  |  |  |
| 10        | DAP im S R + D  |            | 23                        | 25 | 12  | 0    | 0   |  |  |  |

No Urea was pre banded due to the high soil N levels. The additional P applied above 25 P was pre drilled

#### Co operation required:

Sowing equipment, weed control and harvesting will be required from the SFS group/DNRE at each site.

## Calender of Events and Observations <sup>1.</sup>

| Date                      | Event                  | Comments <sup>2</sup>                                                         |
|---------------------------|------------------------|-------------------------------------------------------------------------------|
| 28/5/2001                 | Sowing                 | Sown into good moisture                                                       |
| 12/7/2001                 | Site inspection        | Site inspection P response evident                                            |
| 17/8/2001                 | Site inspection        | Tissue tests taken YEBS visual P response                                     |
| 25/9/2001                 | Site inspection        | Crop looked well                                                              |
| 20/10/2001                | Site inspection        | BYDV evident                                                                  |
| November                  | Field day              | Crop flowering some rust on lower leaves with BYDV affecting yield potential. |
| <sup>1</sup> Record of tr | ial management activ   | vities or events that may affect the trial                                    |
| <sup>2</sup> Note observ  | ations relevant to off | acts of events on trial outcomes                                              |

<sup>2</sup>. Note observations relevant to effects of events on trial outcomes

## Actual rainfall recorded total : 824mm

| rocuaria | innun root | oraca con |      |      |      |      |       |      |       |       |      |
|----------|------------|-----------|------|------|------|------|-------|------|-------|-------|------|
| J        | F          | M         | Α    | M    | J    | J    | A     | S    | 0     | N     | D    |
| 12.8     | 26.2       | 65.2      | 68.2 | 28.6 | 56.4 | 38.4 | 142.8 | 78.6 | 150.2 | 102.4 | 54.4 |

## **Results:**

## **Yield and Protein**

| Treatment | Product         | Yield<br>(t/ha) | Yield % of Nil | WUE*<br>( kg/mm) | Protein<br>(%) |
|-----------|-----------------|-----------------|----------------|------------------|----------------|
| 1         | Nil P           | 5.794           | 100            | 11.90            | 10.98          |
| 2         | DAPS            | 5.645           | 97             | 11.59            | 11.23          |
| 3         | DAPS            | 5.764           | 99             | 11.84            | 11.38          |
| 4         | DAPS            | 5.742           | 99             | 11.79            | 11.43          |
| 5         | DAP Zinc 5%     | 5.333           | 92             | 10.95            | 11.75          |
| 6         | DAPS            | 5.742           | 99             | 11.79            | 10.63          |
| 7         | DAP Cu 2.5 %    | 5.697           | 98             | 11.70            | 11.7           |
| 8         | DAP             | 5.377           | 93             | 11.04            | 11.63          |
| 9         | DAP Cu/Zn 2.5 % | 5.697           | 98             | 11.70            | 11.35          |
| 10        | DAP impreg S    | 5.794           | 100            | 11.90            | 11.8           |
| lean      |                 |                 |                |                  |                |
| SD 5 %    |                 | 0.49            |                |                  | 1.28           |
| CV %      |                 | 6.0             |                |                  | 7.8            |

\*Water use efficiency = ( GSR (M-N) - 110 mm) x 0.02 which for 2001 equals 9.7 tonne.

# Tissue test results YEBS 25<sup>th</sup> September all Treatments :

| Treat   | Product      |      |      |       |       |       |       |      | Cu    | Zn    |
|---------|--------------|------|------|-------|-------|-------|-------|------|-------|-------|
|         |              | N %  | P %  | K %   | S %   | Ca %  | Mg %  | Na % | ppm   | ppm   |
| 1       | Nil          | 4.57 | 5.99 | 22.59 | 0.202 | 0.148 | 0.014 | 2.95 | 0.315 | 0.34  |
| 2       | DAPS         | 4.81 | 3.07 | 22.65 | 0.265 | 0.177 | 0.020 | 2.55 | 0.35  | 0.345 |
| 3       | DAPS         | 4.91 | 4.53 | 23.20 | 0.188 | 0.151 | 0.015 | 2.85 | 0.34  | 0.335 |
| 4       | DAPS         | 4.93 | 4.80 | 24.69 | 0.174 | 0.147 | 0.012 | 2.95 | 0.36  | 0.34  |
| 5       | DAP Zinc 5%  | 4.79 | 4.86 | 24.57 | 0.207 | 0.142 | 0.015 | 2.55 | 0.315 | 0.34  |
| 6       | DAPS         | 4.55 | 5.74 | 22.48 | 0.187 | 0.147 | 0.012 | 2.9  | 0.345 | 0.34  |
| 7       | DAP Cu 2.5 % | 4.93 | 4.49 | 22.57 | 0.198 | 0.151 | 0.012 | 2.8  | 0.33  | 0.325 |
| 8       | DAP          | 4.76 | 4.20 | 21.98 | 0.222 | 0.165 | 0.015 | 2.65 | 0.335 | 0.335 |
| 9       | DAP Cu/Zn2.5 |      |      |       |       |       |       |      |       |       |
|         | %            | 4.83 | 4.95 | 22.72 | 0.205 | 0.150 | 0.012 | 2.75 | 0.33  | 0.345 |
| 10      | DAP impreg S | 4.99 | 3.00 | 25.09 | 0.219 | 0.156 | 0.014 | 2.7  | 0.355 | 0.345 |
| LSD 5 % |              |      |      |       |       |       |       |      |       |       |
| CV %    |              |      |      |       |       |       |       |      |       |       |

#### **Trial Summary:**

#### Main Findings:

Phosphorus (P) responses were visual and evident from 3 leaf stage until the end of September with the 50 of P treatments being well ahead of the nil P as well as the 25 of P plots showing out compared to nil P treatments.

There was not a significant response to phosphorus in relation to grain yield, this may have been the result of high soil P levels Colwell P 60 ppm and the impact of BYDV and leaf rust. The grain size was good with screenings less than 3 % in all treatments. Grain protein levels across the site were adequate (between 10.5% and 12%) indicating that nitrogen did not limit yield Water use efficiency was low at 11 - 12 kg per mm of growing season rainfall this indicates that BYDV and leaf rust had a significant impact on grain yield, confirming the need for a management strategy to be developed to achieve yield potential in high rainfall cropping covering the following aspects of crop health, nutrition, insect control and leaf disease control.

## Recommended action:

Continue a similar trial in 2002 with the view of monitoring the crop nitrogen requirements more closely to ensure yield potentials are achieved.

