

## 5.3.3 CANOLA VARIETY TRIALS (KEITH, BORDERTOWN, FRANCES, SA)

#### Abstract:

A wide range of canola varieties is available to farmers and variety choice should be made on herbicide tolerance type, maturity, oil content and particularly blackleg resistance rating. The blackleg resistance from *sylvestris* derived varieties must now be considered to be too dangerous to consider using these varieties. Do not use farmer retained seed of these varieties.

Researchers: Trent Potter, SARDI

#### Acknowledgements:

This work was undertaken in part as some of the research for the MacKillop Farm Management Group.

Locations: Keith, Bordertown and Frances, South East South Australia

# Growing Season Rainfall (April-Nov):

288 - 311 mm

### Methodology:

- Trials were sown between 25 May and 4 June in the South East of SA (Table 1).
- Three replicates were used and plot size was 8 m by 8 rows at 15 cm row spacing.
- Seed was sown at 5 kg/ha with no seed treatments used.
- Fertiliser (140 kg/ha of 14:17:0:4:1.5) was applied at sowing while an additional 50 kg/ha N as Urea was applied about 6 weeks after sowing.
- All weeds were controlled by the appropriate herbicides with emergent insect control by Endosulfan.
- All trials were windrowed prior to harvest.

## Funding Organization: GRDC

# **Background/Objectives:**

Trials were established to evaluate a range of canola varieties and breeders lines under a range of environments in the South East of SA. Varieties that were derived from *Brassica rapa* subspecies *sylvestris* were included to determine where the breakdown to this form of blackleg had occurred.

### Results and Discussion:

Grain yields from 2004 and also the long term predicted yields from 1998 – 2004 are included in Table 1. Of the three sites, Keith suffered from a drier finish to the season than the other two sites, while Bordertown was affected to a lesser extent. Frances had no yield limiting factors, with high grain yields being obtained.

The yield loss suffered by Surpass 603CL indicates that the resistance to the *sylvestris* attacking strain of blackleg has broken down. This is shown by the data in Table 1 that indicates significant internal infection at all sites and plant death at Keith (this data was supplied by Dr Stephen Marcroft). Other sites in SA also showed high levels of plant death in Surpass 603CL and Surpass 501TT. It is recommended that farmers do not grow these varieties in future. Even though commercial seed will not be available in 2005 it is critical that farmers do not sow retained seed.

### **Summary Discussion:**

Earlier maturing varieties in general performed best at Keith with later maturing varieties better suited to the higher rainfall of Frances (Table 1).

#### **Conclusions:**

The *sylvestris* based varieties should not now be sown due to the breakdown of this blackleg resistance throughout SA and also the fact that internal infection has been found throughout Victoria (S. Marcroft). A wide range of canola varieties is suited to all districts with several new varieties being released in 2005. Data are presented in Table 1 that can be used to help make variety choice.

#### **Key Outcomes:**

The *sylvestris* based varieties should not now be sown due to the breakdown of this blackleg resistance. These trials are ongoing.



Table 1: Canola Yield Performance 2004 and Long Term (1998-2004) as a % of Ag-Spectrum and ATR-Beacon

| VARIETY              | SOUTH EAST<br>2004 |        |        | SOUTH EAST<br>1998-2004 |      |      |      |
|----------------------|--------------------|--------|--------|-------------------------|------|------|------|
|                      |                    |        |        |                         |      |      |      |
|                      | 44C11              | 113    | 120    | 94                      | 112  | 107  | 106  |
| 44C73                | 121                | 91     | 92     | 97                      | 92   | 96   | 97   |
| 45C05                | 86                 | 87     | 90     | 98                      | 96   | 98   | 98   |
| 45C75                | 99                 | 90     | 88     | 90                      | 90   | 90   | 93   |
| 46C04                | 122                | 103    | 96     | 100                     | 101  | 100  | 100  |
| 46C76                | 103                | 96     | 94     | 92                      | 95   | 94   | 96   |
| Ag-Comet             | 104                | 77     | 84     | 96                      | 97   | 97   | 95   |
| Ag-Emblem            |                    |        |        | 97                      | 101  | 99   | 97   |
| Ag-Outback           | 117                | 101    | 97     | 102                     | 101  | 102  | 101  |
| Ag-Spectrum          | 100                | 100    | 100    | 100                     | 100  | 100  | 100  |
| AV-Sapphire          | 95                 | 81     | 94     | 98                      | 99   | 97   | 98   |
| Hyola 61             | 118                | 112    | 99     | 100                     | 98   |      |      |
| Kimberley            | 105                | 93     | 97     | 101                     | 100  | 100  | 100  |
| Lantern              | 103                | 91     | 89     | 96                      | 96   | 97   | 97   |
| MC201                | 66                 | 66     | 83     | 79                      | 80   |      |      |
| MC202                | 93                 | 86     | 86     | 84                      | 86   |      |      |
| Rainbow              | 114                | 104    | 92     | 94                      | 98   | 95   | 98   |
| Rivette              | 129                | 96     | 94     | 106                     | 101  | 101  | 101  |
| Rocket               | 77                 | 67     | 97     |                         |      |      |      |
| Skipton              | 115                | 111    | 98     | 100                     | 102  |      |      |
| Surpass 603CL        | 37                 | 76     | 96     | 93                      | 96   | 96   | 94   |
| Ag-Spectrum yield    | 973                | 1269   | 2594   | 1633                    | 1813 | 1907 | 2699 |
| ATR-Beacon           | 100                | 100    | 100    | 100                     | 100  |      | 100  |
| ATR-Grace            | 82                 | 103    | 80     | 95                      | 97   |      | 103  |
| ATR-Hyden            | 90                 | 85     | 102    | 99                      | 93   |      | 104  |
| ATR-Stubby           | 74                 | 87     | 79     | 98                      | 88   |      | 103  |
| Bravo TT             | 97                 | 106    | 100    |                         |      |      |      |
| Tornado TT           | 97                 | 113    | 96     | 100                     | 100  |      |      |
| Tranby               | 79                 | 84     | 81     |                         |      |      |      |
| Trigold              | 103                | 114    | 80     |                         |      |      |      |
| Trilogy              | 77                 | 62     | 66     |                         |      |      |      |
| ATR-Beacon yield     | 924                | 1046   | 2106   | 1781                    | 1688 |      | 2098 |
| Date sown            | 25-May             | 04-Jun | 31-May |                         |      |      |      |
| Soil type            | CL/lime            | HCL    | HCL    |                         |      |      |      |
| A-O rain             | 288                | 308    | 311    |                         |      |      |      |
| рН                   | 7.3                | 7.8    | 7.2    |                         |      |      |      |
| Stress factors       | dl                 | dl     |        |                         |      |      |      |
| # Polygenic variety  | 2, 10%             | 1, 7%  | 2, 0%  |                         |      |      |      |
| # Sylvestris variety | 5, 42%             | 2, 5%  | 2, 5%  |                         |      |      |      |

Site stress factors: de=moisture stress preflowering, dl=moisture stress post flowering, Second figure is the percentage of plants that were dead (eg 3, 25%)

Data source: SAFCEP