A Comparison of Potassium rates and timings in Canola

Pete Rees, Field Research Manager, Summit Fertilizers

Purpose: This was the first year of an intended long term trial investigating the effect of K nutrition on sandplain. Potassium was applied at rates between zero and 100 kg/ha IBS and banded in the forms of MOP and compound NPK product (Vigour).

Location: Colty Downs, West Moora (Richard and Pam Hamilton)

Soil Type: Yellow sandy loam

Soil Results:

		P (mg/kg)	K (mg/kg)	S (mg/kg)	OC (%)	Cu (mg/kg)	Zn (mg/kg)	PRI	pH (CaCl2)	Al (mg/kg)
	Topsoil (0-10cm)	25	31	6	0.83	0.78	1.12	3	4.7	1.3
	Subsoil (20-30cm)	8	21	6	0.24	0.29	0.18	4	4.3	7.2
Ro	tation: 2008 \	Wheat; 20	07 Lupins	s; 2006 W	heat					

BACKGROUND SUMMARY

This trial was designed to examine the response to K applied to strong sandplain, and to compare the efficacy of potassium when drilled (a more recent practice) or top dressed. There is a current belief that K is more effective when drilled or banded than when top-dressed in sandy soils. This is based on a belief that top dressing prior to sowing will result in the K being graded in to the non-wetting ridges, while top dressing post seeding may cause decreases in uptake due to delays in application and dissolution. While both theories are sound, most research suggests that K is mobile enough to be plant available no matter how it is applied.

TRIAL DESIGNCrop Type:Canola (Cobbler)Sowing Date:19 May 2009Row Spacing:22 cmSowing Rate:5 kg/haSowing Depth:1 cmMachinery:Plot seeder with Knife points and press wheelsSeed Treatment:Jockey & Gaucho

- 2t/ha Lime & 200kg/ha Gypsum were applied pre-seeding
- All treatments (except Treatment 1 UTC) had 100kg/ha MAPSZC (10.6N, 21P, 8S, 0.3Cu, 0.3Zn) basal at seeding
- All treatments (except UTC and Treatment 3 0 N) had 120kg/ha N applied as Urea in 3 timings;
 1st IBS on 19th May; 2nd 4-6 leaf on 29th June; 3rd pre-spiking on 3rd August

No.	Treatment (kg/ha)							
1	Untreated control (UTC) (no fertilizer)							
2	0 K							
3	25 K	banded as MOP (0 N)						
4	25 K	banded as MOP						
5	12.5 K	banded as MOP						
6	6.25 K	banded as MOP						
7	25 K	topdressed IBS						
8	50 K	topdressed IBS						
9	100 K	topdressed IBS						
10	12.5 K	banded as Vigour						
11	16 K	banded as Vigour						

RESULTS

In this trial there were no significant differences between any K treatments, with all treatments that received equivalent N and P averaging between 1.73 and 1.96 t/ha. The UTC & Treatment 3 yields were significantly lower than all other treatments (table 1), with 120 kg/ha N resulting in an average grain yield response of 1 t/ha.

Significant difference indicted by letters in right hand column

No.	Treatment	Yield	
1	Untreated control (no fertilizer)	0.91	b
2	0 K	1.78	а
3	25 K banded as MOP (0 N)	0.79	b
4	25 K banded as MOP	1.73	а
5	12.5 K banded as MOP	1.75	а
6	6.25 K banded as MOP	1.83	а
7	25 K topdressed IBS	1.97	а
8	50 K topdressed IBS	1.94	а
9	100 K topdressed IBS	1.93	а
10	12.5 K banded as Vigour	1.86	а
11	16 K banded as Vigour	1.73	а
LSD	(P=.05)	0.25	
CV		8.76	

DISCUSSION

- There were no significant differences between K sources or rates at this trial, despite soil test model predictions of high K response
- Canola did not respond to high P application at this site in the absence of Nitrogen
- The site was highly N responsive, although the N use efficiency suggests leaching was moderate. This may have been compounded by low pH and the presence of Aluminium in the subsoil.
- More K response may be seen in wheat in the 2010 season.

ACKNOWLEDGEMENTS/ THANKS

Thanks go to the Hamilton and McTaggart families for access to their property and Kalyx Agriculture for conducting this research.

PAPER REVIEWED BY: Brett Beard, Summit Fertilizers

EMAIL CONTACT: prees@summitfertz.com.au