Wheat response to P and N at Dandaragan 2013

Brett Beard, Area Manager, Summit Fertilisers, Moora

Purpose:	To investigate the response of wheat to different rates of applied P and N
Location: Soil Type:	WMG Main Trial Site, Negus's farm, Dandaragan RD, Dandaragan Sand
Rotation:	2012 Pasture

Soil Test Results:

Depth (cm)	Topsoil	Subsoil
pH Level (CaCl2) (pH)	5.4	3.9
Aluminium CaCl2 (mg/Kg)	0.5	8.2
PBI	27	
Organic Carbon %	1.3	
Conductivity (dS/m)	0.08	0.02
Ammonium Nitrogen (mg/kg)	1	
Nitrate Nitrogen (mg/kg)	23	
Phosphorus Colwell (mg/kg)	21	13
Potassium Colwell (mg/kg)	79	36
Sulphur (mg/kg)	6	3
Copper (mg/kg)	0.2	
Zinc (mg/kg)	0.7	
Exch Calcium (mg/kg)	3.4	
Exch Magnesium (mg/kg)	0.4	
Exch Sodium (mg/kg)	0.1	
Exch Potassium (mg/kg)	0.2	

Growing Season Rainfall (April-October 2013): 471mm compared to the long-term average of 536mm. Mid-May to mid-July was particularly dry. June saw 18mm fall compared with the long-term June average of 119mm.

BACKGROUND SUMMARY

A trial with a goal to investigate how combining Phosphorus and Nitrogen applications influences wheat growth and yield under 2013 conditions and provide growers with value-based fertilizer recommendations.

TRIAL DESIGN Plot size:					L	Length 12 m. Width 2 m. Row spacing 25.4 cm (10")							
Machinery use:					S	Small plot seeder, knife points and press wheels							
Crop type and varieties used:						Cobra wheat							
Se	edi	ng rat	es and dates	5:	7	70 kg/ha o	n 10 th M	ay 2013					
Fe	rtili	izer pr	ep:		S	SOP 100 k	g/ha IB	Ś					
Str	rata	sol Zin	nc 300 mL/ha	Big Re	d Copp	er 300 mL	/ha						
Не	rbi	cide ra	ates and date	es:		Pr	e-emerg	ent ²	118 g/ha	Sakura			
2 L	_/ha	a Avade	ex						0				
						400 ml	_/ha Diu	ron					
						3 a	/ha Allv	-					
						2 L/ha	SpravSe	ed					
Po	st-e	emerge	ent			30	g/ha M	onza	(2/06	/13)			
35	0 m	nL/ha A	xial				0		(15/0	, 6/13)			
67	0 m	nL/ha ∖	/elocity						(25/0	, 6/13)			
Ins	sec	ticides	applied:	Pre-	emerge	ent 20	0 mL/ha	Bifenthri	n	,			
					0	1 L/ha C	hlorpyri	ohos					
			Post-em	ergent		30	0 mL/ha	Chlorpyr	ifos	(26/05/1	3)		
Tre	eati	ments	:	0						· ·	,		
T	rt	P	Ν	Seedi	ng ^a	N banded at N top up N top					o up		
(k	kg/h	na)	(kg/ha)	Fertili	ser	seeding 25 ^t			'' June 22 [™] July				
D (k	anc (a/h	aeu a)				(kg/na) (L/)	(L/Na	9		
1		0	0	0									
2		0	40		0	Urea	55	UAN	36				
3		0	80		0	Urea	55	UAN	65	UAN	65		
4		0	120		0	Urea	55	UAN	112.5	UAN	112.5		
5		8	0	TSP	39								
6		8	40	TSP	39	Urea	55	UAN	36				
7		8	80	TSP	39	Urea	55	UAN	65	UAN	65		
8		8	120	TSP	39	Urea	55	UAN	112.5	UAN	112.5		
9		16	0	TSP	78								
1(0	16	40	TSP	78	Urea	55	UAN	36				
1	1	16	80	TSP	78	Urea	55	UAN	65	UAN	65		
12	2	16	120	TSP	78	Urea	55	UAN	112.5	UAN	112.5		
1:	3	24	0	TSP	117								
14	4	24	40	TSP	117	Urea	55	UAN	36				
1	5	24	80	TSP	117	Urea	55	UAN	65	UAN	65		
1	6	24	120	TSP	117	Urea	55	UAN	112.5	UAN	112.5		

^a Triple Superphosphate

TRIAL LAYOUT

N														
Rep/plot No 🗹 🚎	301	302	303	304	305	306	307	308	309	310	311	312	313	314
	2	12	4	15	3	8	13	6	10	14	7	16	9	1
atment No. 🗇 🖮	201	202	203	204	205	206	207	208	209	210	211	212	213	214
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	101	102	103	104	105	106	107	108	109	110	111	112	113	114
	16	6	11	2	3	15	7	9	13	10	4	8	14	1

RESULTS/STATISTICS

- Emergence was slow but uniform across the site. Average emergence was 79% per plot.
- Crop vigour and biomass improved with increasing fertilizer application. Plant growth responded significantly to both P and N.
- Grain production showed strong increases with the application of P and N.
- Yield increases up to 1.3 t/ha were seen in response to increased P application independent of N.
- Yield increases up to 1.4 t/ha were seen in response to increased N application independent of P.
- Combined P and N application increased yield up to 2.3 t/ha more than the untreated control plots. However, this interaction was not statistically significant.
- Protein was generally in the 9 to 10 % range, averaging 9.8 %. Increased yields at high fertilizer rates may have diluted protein at rates less than 120 N. However, total protein yield per hectare increased strongly with increased P and N applied.
- There was no relationship between fertilizer applied and hectolitre weight or screenings. All hectolitre weights were above 78 kg/hl and all screenings were less than 2.2%. These are well within delivery standards.

Biomass Score at 12 weeks

Vigour Score at 12 weeks

FINANCIAL ANALYSIS OF RESULTS

 Delivery grades improved with applied P and N. Grades ranged from ASW with no P or N applied to APW at P24 for all N treatments.

- With all other costs being equal between treatments we can use income from grain minus cost of P fertilizer applied as a crude gross margin
- Optimum return was seen at P 8 to 16 kg/ha applied and N at 40 kg/ha applied.
- Gross margins are indicative only and are strongly influenced by the constraints outlined below, especially the weed burden. Improved weed control should result in improved margins at higher fertilizer application rates.

Wheat delivery grades and indicative value return represented by different P x N treatments

	Fert kg/ha	P 0	P 8	P 16	P 24				
Delivery Grade									
	N 0	ASW1	ASW1	ASW1	APW1				
	N 40	ASW1	ASW1	APW2	APW2				
	N 80	ASW1	ASW1	ASW1	APW2				
	N 120	ASW1	ASW1	ASW1	APW2				
			Gross Grain value pe	er ha					
	N 0	\$ 351	\$ 505	\$ 532	\$ 645				
	N 40	\$ 510	\$ 566	\$ 766	\$ 795				
	N 80	\$ 635	\$ 586	\$ 722	\$ 792				
	N 120	\$ 614	\$ 614	\$ 586	\$ 996				
Gross margin*									
	N 0	\$ 351	\$ 381	\$ 267	\$ 236				
	N 40	\$ 377	\$ 309	\$ 367	\$ 253				
	N 80	\$ 369	\$ 195	\$ 190	\$ 116				
	N 120	\$ 215	\$ 91	-\$ 79	\$ 187				

* Gross margin calculated using yield, grain values at Jan 2014 APW1 \$273/T with grade spreads, minus cost of treatment fertilizer applied, UAN \$1.51 and Urea \$1.27 per kg of N, TSP \$3.41 per kg P.

OBSERVATION/ DISCUSSION/ MEASUREMENTS

- Poor performance of pre-emergent herbicides led to poor weed control. Ryegrass was a significant problem. Ryegrass also appeared to respond to P and N treatments resulting in increased competitive effect and would have limited wheat responses to the applied treatments.
- 2013 growing season rainfall limited production and the value of increasing fertilizer rates. Rainfall during mid-May to mid-July – when important tillering and growth response to applied N is expected – was about 10% of long-term average.
- Non wetting soils had an impact on early emergence of wheat in this trial.
- The combination of low rainfall and non-wetting soils decreased the herbicide effectiveness.
- Sub soil pH and aluminium levels may well have limited deep root growth and exacerbated the impact of the dry conditions and, therefore, limited the total plant response to applied fertilizer.
- Considering the final weed load on the site, a direct and accurate measure of biomass may have provided a more meaningful basis for assessing responses to fertilizer treatments and calculating grower returns.

CONCLUSION

Despite weed competition, less-than-ideal winter weather and soil conditions, wheat responded to both P and N application at this site. Grower returns on fertilizer investment were best with P applied at 8 to 16 kg/ha and N applied at 40 kg/ha. Greater response and returns from increased fertilizer application may be expected with improved early-to-mid season moisture conditions and less weed competition.

PEER REVIEW/REVIEW

ACKNOWLEDGEMENTS/ THANKS

Living Farm for establishment and management of the trial for Summit Fertilizers and Peter Negus for allowing the trial on his property.